Spaces:
Sleeping
Sleeping
| # app.py | |
| import gradio as gr | |
| import torch | |
| from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq | |
| # ------------------- | |
| # Load Whisper (STT) from Hugging Face | |
| # ------------------- | |
| stt_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-small", # Replace with your uploaded Whisper model repo | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| # ------------------- | |
| # Load ChatDOC model | |
| # ------------------- | |
| chatdoc_model_id = "Muhammadidrees/RaiyaChatDoc" # replace with your uploaded repo | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| processor = AutoProcessor.from_pretrained(chatdoc_model_id, trust_remote_code=True) | |
| chatdoc_model = AutoModelForVision2Seq.from_pretrained( | |
| chatdoc_model_id, | |
| torch_dtype=dtype | |
| ).to(device) | |
| # ------------------- | |
| # Chat function | |
| # ------------------- | |
| def chat_with_doc(audio, message, history=[]): | |
| transcript = "" | |
| if audio is not None: | |
| result = stt_pipe(audio) | |
| transcript = result["text"] | |
| user_msg = message or transcript | |
| if not user_msg.strip(): | |
| return history, "No input detected." | |
| history.append([user_msg, None]) | |
| # System prompt (simplified for demo) | |
| system_prompt = "You are a medical doctor interviewing a patient. Respond helpfully." | |
| dialogue = "\n".join([f"Patient: {u}\nDoctor: {b}" for u, b in history if u and b]) | |
| prompt = f"{system_prompt}\n\nConversation:\n{dialogue}\nPatient: {user_msg}\nDoctor:" | |
| inputs = processor(text=prompt, images=None, return_tensors="pt").to(device) | |
| with torch.inference_mode(): | |
| outputs = chatdoc_model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| do_sample=True, | |
| temperature=0.7 | |
| ) | |
| input_len = inputs["input_ids"].shape[1] | |
| gen_tokens = outputs[:, input_len:] | |
| response = processor.batch_decode(gen_tokens, skip_special_tokens=True)[0].strip() | |
| history[-1][1] = response | |
| return history, response | |
| # ------------------- | |
| # Gradio UI | |
| # ------------------- | |
| with gr.Blocks(title="ChatDOC") as demo: | |
| gr.Markdown("# 🩺 ChatDOC + Whisper\nTalk or type your symptoms.") | |
| chatbot = gr.Chatbot(height=400) | |
| msg = gr.Textbox(placeholder="Type your symptoms...") | |
| mic = gr.Audio(sources=["microphone"], type="filepath", label="🎤 Speak your symptoms") | |
| clear_btn = gr.Button("Clear Chat") | |
| state = gr.State([]) | |
| def respond(audio, text, history): | |
| return chat_with_doc(audio, text, history) | |
| msg.submit(respond, [mic, msg, state], [chatbot, msg, state]) | |
| mic.change(respond, [mic, msg, state], [chatbot, msg, state]) | |
| clear_btn.click(lambda: ([], "", []), None, [chatbot, msg, state]) | |
| if __name__ == "__main__": | |
| demo.launch() | |