import gradio as gr from PIL import Image import numpy as np import yolov5 model = yolov5.load('keremberke/yolov5n-license-plate') model.conf = 0.25 model.iou = 0.45 def detect(img: Image.Image): img = img.convert("RGB") arr = np.array(img) results = model(arr, size=640) results.render() annotated = results.ims[0] return Image.fromarray(annotated) demo = gr.Interface( fn=detect, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="🔍 Detector de Matrículas", description="Sube una imagen y detecto matrículas usando YOLOv5n." ) if __name__ == "__main__": demo.launch()