File size: 7,243 Bytes
3297f8d
 
 
 
7327516
 
9f0bc77
3297f8d
5d4bb2c
3297f8d
2f2eda6
 
 
 
3297f8d
 
 
 
9f0bc77
cae05b4
2f2eda6
 
 
cae05b4
3297f8d
9f0bc77
2f2eda6
3297f8d
 
 
2f2eda6
 
 
 
9f0bc77
 
 
2f2eda6
 
3297f8d
9f0bc77
2f2eda6
3297f8d
 
 
 
2f2eda6
166f868
 
 
 
 
 
 
2f2eda6
 
7327516
3297f8d
7327516
3297f8d
7327516
3297f8d
 
 
7327516
2f2eda6
 
3297f8d
 
2f2eda6
 
 
 
 
 
 
 
3297f8d
7327516
 
2f2eda6
 
7327516
2f2eda6
 
 
7327516
 
9f0bc77
 
 
7327516
 
 
 
2f2eda6
 
7327516
 
2f2eda6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15de1d7
5d4bb2c
2f2eda6
cae05b4
2f2eda6
 
 
 
 
15de1d7
5d4bb2c
 
 
4ab7e58
cc4a1f7
 
 
a059d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4a1f7
 
 
 
 
 
 
 
 
 
2f2eda6
 
 
cc4a1f7
 
 
 
 
 
 
2f2eda6
 
cc4a1f7
 
2f2eda6
3297f8d
cc4a1f7
 
2f2eda6
 
 
 
 
 
 
 
 
 
 
 
 
3297f8d
 
2f2eda6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import torch
import gradio as gr
import requests
from typing import List, Dict, Iterator
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from peft import PeftModel
import json  

BASE_MODEL_ID   = "Tweeties/tweety-7b-tatar-v24a"
ADAPTER_ID      = os.getenv("ADAPTER_ID")
YANDEX_API_KEY  = os.getenv("YANDEX_API_KEY")
YANDEX_FOLDER_ID= os.getenv("YANDEX_FOLDER_ID")

if not all([ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID]):
    raise ValueError("Необходимо установить переменные окружения: ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID")

MAX_NEW_TOKENS = 1024
TEMPERATURE          = 1
TOP_P                = 0.9
REPETITION_PENALTY   = 1.05

SYS_PROMPT_TT = ("Син-цифрлы ярдәмче (ир-ат нәселе). Сине Сбербанк дирекциясенең ESG да уйлап таптылар. Син барлык өлкәләрдә, бигрәк тә Татарстанга кагылышлы өлкәләрдә кызыклы кулланучы эксперты! Ул сезгә бик күп сораулар бирәчәк, ә сезнең эшегез-шәрехләр бирү, кулланучының сорауларына җавап бирү, адымлап киңәшләр, мисаллар бирү һәм, кирәк булганда, кулланучыга аныклаучы сораулар бирү.")



tok = AutoTokenizer.from_pretrained(ADAPTER_ID, use_fast=False)
if tok.pad_token is None:
    tok.pad_token = tok.eos_token


base = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL_ID,
    torch_dtype=torch.float16,
    device_map="auto",
    low_cpu_mem_usage=True
)

print("Применяем LoRA адаптер...")
model = PeftModel.from_pretrained(base, ADAPTER_ID, torch_dtype=torch.float16)
model.config.use_cache = False
model.eval()
print("✅ Модель успешно загружена!")

YANDEX_TRANSLATE_URL = "https://translate.api.cloud.yandex.net/translate/v2/translate"
YANDEX_DETECT_URL    = "https://translate.api.cloud.yandex.net/translate/v2/detect"

def detect_language(text: str) -> str:
    headers = {"Authorization": f"Api-Key {YANDEX_API_KEY}"}
    payload = {"folderId": YANDEX_FOLDER_ID, "text": text}
    try:
        resp = requests.post(YANDEX_DETECT_URL, headers=headers, json=payload, timeout=10)
        resp.raise_for_status()
        return resp.json().get("languageCode", "ru")
    except requests.exceptions.RequestException:
        return "ru"

def ru2tt(text: str) -> str:
    headers = {"Authorization": f"Api-Key {YANDEX_API_KEY}"}
    payload = {"folderId": YANDEX_FOLDER_ID, "texts": [text], "sourceLanguageCode": "ru", "targetLanguageCode": "tt"}
    try:
        resp = requests.post(YANDEX_TRANSLATE_URL, headers=headers, json=payload, timeout=30)
        resp.raise_for_status()
        return resp.json()["translations"][0]["text"]
    except requests.exceptions.RequestException:
        return text

def render_prompt(messages: List[Dict[str, str]]) -> str:
    return tok.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )


# --- 4) Стриминговая генерация (без тримминга) ---
@torch.inference_mode()
def generate_tt_reply_stream(messages: List[Dict[str, str]]) -> Iterator[str]:
    prompt = render_prompt(messages)
    enc = tok(prompt, return_tensors="pt")
    enc = {k: v.to(model.device) for k, v in enc.items()}

    streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = dict(
        **enc,
        streamer=streamer,
        max_new_tokens=MAX_NEW_TOKENS,
        do_sample=False,
        # temperature=TEMPERATURE,
        # top_p=TOP_P,
        repetition_penalty=REPETITION_PENALTY,
        eos_token_id=tok.eos_token_id,
        pad_token_id=tok.pad_token_id,
    )

    thread = Thread(target=model.generate, kwargs=gen_kwargs)
    thread.start()

    acc = ""
    for chunk in streamer:
        acc += chunk
        yield acc



def chat_fn(message: str, ui_history: list, messages_state: List[Dict[str, str]]):
    if not messages_state or messages_state[0].get("role") != "system":
        messages_state = [{"role": "system", "content": SYS_PROMPT_TT}]

    detected = detect_language(message)
    user_tt = ru2tt(message) if detected != "tt" else message

    messages = messages_state + [{"role": "user", "content": user_tt}]
    ui_history = ui_history + [[user_tt, ""]]

    last = ""  
    for partial in generate_tt_reply_stream(messages):
        last = partial                
        ui_history[-1][1] = partial
        yield ui_history, messages_state + [
            {"role": "user", "content": user_tt},
            {"role": "assistant", "content": partial},
        ]

    final_state = messages + [{"role": "assistant", "content": last}]
    print("STATE:", json.dumps(final_state, ensure_ascii=False))


with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
    #chatbot .message.bot,
    #chatbot .message.bot .markdown,
    #chatbot .message.bot .prose,
    #chatbot .message.bot p,
    #chatbot .message.bot li,
    #chatbot .message.bot pre,
    #chatbot .message.bot code {
      font-size: 22px !important;
      line-height: 1.7 !important;
    }

    #chatbot .gr-chatbot_message.gr-chatbot_message__bot,
    #chatbot .gr-chatbot_message.gr-chatbot_message__bot .gr-chatbot_markdown > *,
    #chatbot .gr-chatbot_message--assistant,
    #chatbot .gr-chatbot_message--assistant .gr-chatbot_markdown > * {
      font-size: 22px !important;
      line-height: 1.7 !important;
    }

    #chatbot .gr-chatbot { font-size: 18px !important; line-height: 1.5; }
    #chatbot .gr-chatbot_message { font-size: 18px !important; }
    #chatbot .gr-chatbot_markdown > * { font-size: 18px !important; line-height: 1.6; }

    #msg textarea { font-size: 24px !important; }
    #clear { font-size: 16px !important; }
    #title h2 { font-size: 28px !important; }
    """
) as demo:
    gr.Markdown("## Татарский чат-бот от команды Сбера", elem_id="title")

    messages_state = gr.State([{"role": "system", "content": SYS_PROMPT_TT}])

    chatbot = gr.Chatbot(
        label="Диалог",
        height=500,
        bubble_full_width=False,
        elem_id="chatbot"
    )

    msg = gr.Textbox(
        label="Хәбәрегезне рус яки татар телендә языгыз",
        placeholder="Татарстанның башкаласы нинди шәһәр? / Какая столица Татарстана?",
        elem_id="msg"
    )

    clear = gr.Button("🗑️ Чистарту", elem_id="clear")
    
    msg.submit(
        chat_fn,
        inputs=[msg, chatbot, messages_state],
        outputs=[chatbot, messages_state],
    )

    msg.submit(lambda: "", None, msg)
    
    def _reset():
        return [], [{"role": "system", "content": SYS_PROMPT_TT}]

    clear.click(_reset, inputs=None, outputs=[chatbot, messages_state], queue=False)
    clear.click(lambda: "", None, msg, queue=False)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))