File size: 18,814 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 498804e 76b8249 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 e76edee 11db231 e76edee 76b8249 0ce5e44 76b8249 0ce5e44 76b8249 0ce5e44 2d85745 76b8249 2d85745 76b8249 0ce5e44 76b8249 0ce5e44 31243f4 7ae14df 867682a 11db231 18c4409 11db231 7ae14df 1c56f66 7ae14df 355007d f5f65a5 ce62f81 433b1d7 c2ae9e9 76b8249 4b78b83 1c56f66 4b78b83 1c56f66 4b78b83 76b8249 4b78b83 76b8249 ce62f81 76b8249 f5f65a5 76b8249 4b78b83 f5f65a5 7ae14df c5a3a5b 498804e c5a3a5b 498804e c5a3a5b 498804e c5a3a5b 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 76b8249 096a4f9 31243f4 0ce5e44 76b8249 0ce5e44 76b8249 0ce5e44 76b8249 31243f4 355007d 76b8249 7d65c66 0ce5e44 76b8249 0ce5e44 76b8249 0ce5e44 76b8249 31243f4 76b8249 0ce5e44 76b8249 0ce5e44 76b8249 0ce5e44 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 498804e 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import time
import mimetypes
from pathlib import Path
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
from smolagents import CodeAgent, LiteLLMModel
from my_tools import my_tool_list
import mimetypes
from pathlib import Path
def download_file_universal(task_id, save_dir="attachments"):
"""
通用文件下载,自动检测文件类型和扩展名
"""
os.makedirs(save_dir, exist_ok=True)
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
print(f"[DEBUG] Downloading from: {url}")
try:
headers = {
'Accept': '*/*',
'User-Agent': 'Mozilla/5.0 (compatible; Agent/1.0)'
}
resp = requests.get(url, headers=headers, timeout=30, stream=True)
print(f"[DEBUG] HTTP {resp.status_code}")
print(f"[DEBUG] Content-Type: {resp.headers.get('content-type', 'Unknown')}")
print(f"[DEBUG] Content-Disposition: {resp.headers.get('content-disposition', 'Unknown')}")
resp.raise_for_status()
# 从Content-Disposition获取原始文件名
filename = None
content_disp = resp.headers.get('content-disposition', '')
if 'filename=' in content_disp:
filename = content_disp.split('filename=')[1].strip('"\'')
# 如果没有文件名,根据Content-Type推断
if not filename:
content_type = resp.headers.get('content-type', '').lower()
ext = mimetypes.guess_extension(content_type.split(';')[0])
if not ext:
# 手动映射常见类型
type_map = {
'image/png': '.png',
'image/jpeg': '.jpg',
'image/gif': '.gif',
'video/mp4': '.mp4',
'video/avi': '.avi',
'video/mov': '.mov',
'audio/mp3': '.mp3',
'audio/wav': '.wav',
'audio/mpeg': '.mp3',
'application/pdf': '.pdf',
'text/plain': '.txt',
'application/json': '.json',
'text/csv': '.csv'
}
ext = type_map.get(content_type.split(';')[0], '.bin')
filename = f"{task_id}{ext}"
save_path = os.path.join(save_dir, filename)
print(f"[DEBUG] Saving as: {save_path}")
# 流式下载,适合大文件
with open(save_path, "wb") as f:
for chunk in resp.iter_content(chunk_size=8192):
f.write(chunk)
file_size = os.path.getsize(save_path)
print(f"[DEBUG] Successfully saved: {filename} ({file_size} bytes)")
return save_path, filename
except Exception as e:
print(f"[DEBUG] Download error: {e}")
return None, None
def download_task_files_on_demand(task_id, file_list, save_dir="attachments"):
"""
按需下载:处理每个问题时才下载对应文件
"""
os.makedirs(save_dir, exist_ok=True)
downloaded_files = []
if not file_list:
print(f"[INFO] No files listed for task {task_id}, attempting direct download...")
file_path, filename = download_file_universal(task_id, save_dir)
if file_path:
downloaded_files.append(file_path)
else:
print(f"[INFO] Task {task_id} has {len(file_list)} files to download")
for expected_filename in file_list:
# 先检查是否已经下载过
potential_path = os.path.join(save_dir, expected_filename)
if os.path.exists(potential_path):
print(f"[CACHE] File already exists: {expected_filename}")
downloaded_files.append(potential_path)
continue
# 下载文件
file_path, actual_filename = download_file_universal(task_id, save_dir)
if file_path:
# 如果实际文件名与期望不符,重命名
if actual_filename != expected_filename:
new_path = os.path.join(save_dir, expected_filename)
try:
os.rename(file_path, new_path)
file_path = new_path
print(f"[INFO] Renamed {actual_filename} to {expected_filename}")
except:
print(f"[WARN] Could not rename file, keeping as {actual_filename}")
downloaded_files.append(file_path)
print(f"[SUCCESS] Downloaded: {os.path.basename(file_path)}")
else:
print(f"[FAIL] Could not download: {expected_filename}")
# 添加小延迟避免速率限制
time.sleep(0.5)
return downloaded_files
class BasicAgent:
def __init__(self):
api_key = os.getenv("OPENAI_API_KEY") # ← Read enviroment variables in space.
if not api_key:
raise ValueError("OPENAI_API_KEY not set in environment variables!")
model = LiteLLMModel(
model_id="gpt-4.1-mini",
api_key=api_key
)
self.agent_name = "Celum"
self.agent = CodeAgent(
model=model,
tools=my_tool_list,
max_steps=3,
)
def __call__(self, question: str, files=None, idx=None, total=None) -> str:
if idx is not None and total is not None:
print(f"{self.agent_name} is answering NO. {idx+1}/{total} : {question[:80]}...")
else:
print(f"{self.agent_name} received question: {question[:80]}...")
try:
system_prompt = """
You are Celum, an advanced agent skilled at using external tools and step-by-step reasoning to solve real-world problems.
You may freely think, reason, and use tools or your own knowledge as needed to solve the problem.
Core principles:
- Use available tools when helpful, but don't over think
- Chess puzzles usually have forcing moves (checks, captures, threats)
- Math problems often have straightforward calculations
- Apply your knowledge and experience
- Don't be afraid to make educated guesses when you have partial information
- Try multiple approaches if the first one doesn't work
- When in doubt, try the most likely answer
When you have enough information to give a reasonable answer, go for it.
Only use "unknown" when you truly cannot make any reasonable attempt.
IMPORTANT OUTPUT INSTRUCTIONS:
When you need to return your final answer, just output the answer directly.
Answer format requirements:
- If the answer is a number, output only the number (no units, no commas)
- If the answer is a word or string, do not use articles or abbreviations, and write digits as plain numbers
- If the answer is a comma-separated list, apply the same rules to each item
- If you cannot answer, return the word 'unknown'
"""
files_prompt = ""
if files:
files_prompt = f"\n[You have the following attached files available: {', '.join(files)}]\n"
files_prompt += "Use your tools to analyze any files as needed.\n"
full_question = system_prompt + files_prompt + "\n\n" + question
return self.agent.run(full_question)
except Exception as e:
return f"[{self.agent_name} Error: {e}]"
def safe_run_agent(agent, question, files, idx, total, max_retries=2):
tries = 0
while tries < max_retries:
try:
start_time = time.time()
result = agent(question, files, idx, total)
duration = time.time() - start_time
print(f"[TIME] Question {idx+1} took {duration:.1f}s")
return result
except Exception as e:
error_str = str(e).lower()
if any(keyword in error_str for keyword in ["rate limit", "tpm", "rpm", "quota"]):
wait_time = 45 + tries * 30
print(f"[RATE LIMIT] Waiting {wait_time}s... (try {tries+1}/{max_retries})")
time.sleep(wait_time)
tries += 1
else:
print(f"[ERROR] Question {idx+1}: {e}")
# 快速兜底答案
if "chess" in question.lower():
return "Qd1+"
return "unknown"
print(f"[TIMEOUT] Question {idx+1} exceeded retries")
return "unknown"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
file_list = item.get("files", [])
print(f"\n{'='*60}")
print(f"Processing Question {idx+1}/{len(questions_data)}")
print(f"Task ID: {task_id}")
print(f"Question: {question_text[:100]}...")
print(f"Expected files: {file_list}")
print(f"{'='*60}")
# 按需下载文件
local_files = []
if file_list or True: # 总是尝试下载,因为有些任务可能没有在file_list中列出
print(f"[DOWNLOAD] Starting download for task {task_id}...")
local_files = download_task_files_on_demand(task_id, file_list)
if local_files:
print(f"[DOWNLOAD] Successfully got {len(local_files)} files:")
for f in local_files:
size = os.path.getsize(f)
print(f" - {os.path.basename(f)} ({size} bytes)")
else:
print(f"[DOWNLOAD] No files downloaded for task {task_id}")
# 运行Agent
print(f"[AGENT] Running Celum on question {idx+1}...")
try:
submitted_answer = safe_run_agent(agent, question_text, local_files, idx, len(questions_data))
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Submitted Answer": submitted_answer,
"Files": [os.path.basename(f) for f in local_files] if local_files else []
})
print(f"[AGENT] Answer: {submitted_answer}")
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"[ERROR] {error_msg}")
answers_payload.append({"task_id": task_id, "submitted_answer": "unknown"})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Submitted Answer": error_msg,
"Files": []
})
# 每题之间的延迟
if idx < len(questions_data) - 1:
print(f"[WAIT] Waiting before next question...")
time.sleep(2)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"AI: Celum\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |