File size: 18,814 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
498804e
76b8249
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
e76edee
11db231
 
e76edee
76b8249
 
 
 
 
 
 
0ce5e44
76b8249
 
 
 
 
0ce5e44
76b8249
 
 
 
 
 
 
 
 
 
0ce5e44
2d85745
76b8249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d85745
76b8249
 
 
 
 
 
 
 
0ce5e44
76b8249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce5e44
31243f4
 
7ae14df
867682a
 
11db231
18c4409
11db231
 
 
7ae14df
 
 
 
1c56f66
7ae14df
 
355007d
f5f65a5
 
 
 
 
ce62f81
433b1d7
c2ae9e9
76b8249
4b78b83
1c56f66
 
 
4b78b83
 
 
1c56f66
4b78b83
 
 
 
76b8249
4b78b83
76b8249
 
 
 
 
 
ce62f81
76b8249
f5f65a5
 
76b8249
4b78b83
 
f5f65a5
 
 
 
7ae14df
c5a3a5b
498804e
 
 
c5a3a5b
 
 
 
 
498804e
c5a3a5b
 
 
 
498804e
 
 
c5a3a5b
 
 
 
 
 
 
 
4021bf3
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
76b8249
096a4f9
31243f4
 
0ce5e44
 
76b8249
 
 
 
 
 
 
 
0ce5e44
76b8249
 
 
 
 
 
 
 
 
 
 
0ce5e44
76b8249
 
31243f4
355007d
76b8249
7d65c66
0ce5e44
 
76b8249
0ce5e44
76b8249
0ce5e44
76b8249
 
 
31243f4
76b8249
 
 
0ce5e44
 
76b8249
 
 
0ce5e44
76b8249
 
 
 
 
0ce5e44
31243f4
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
498804e
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import time
import mimetypes
from pathlib import Path

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------

from smolagents import CodeAgent, LiteLLMModel 
from my_tools import my_tool_list  

import mimetypes
from pathlib import Path

def download_file_universal(task_id, save_dir="attachments"):
    """
    通用文件下载,自动检测文件类型和扩展名
    """
    os.makedirs(save_dir, exist_ok=True)
    
    url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
    
    print(f"[DEBUG] Downloading from: {url}")
    
    try:
        headers = {
            'Accept': '*/*',
            'User-Agent': 'Mozilla/5.0 (compatible; Agent/1.0)'
        }
        
        resp = requests.get(url, headers=headers, timeout=30, stream=True)
        print(f"[DEBUG] HTTP {resp.status_code}")
        print(f"[DEBUG] Content-Type: {resp.headers.get('content-type', 'Unknown')}")
        print(f"[DEBUG] Content-Disposition: {resp.headers.get('content-disposition', 'Unknown')}")
        
        resp.raise_for_status()
        
        # 从Content-Disposition获取原始文件名
        filename = None
        content_disp = resp.headers.get('content-disposition', '')
        if 'filename=' in content_disp:
            filename = content_disp.split('filename=')[1].strip('"\'')
        
        # 如果没有文件名,根据Content-Type推断
        if not filename:
            content_type = resp.headers.get('content-type', '').lower()
            ext = mimetypes.guess_extension(content_type.split(';')[0])
            if not ext:
                # 手动映射常见类型
                type_map = {
                    'image/png': '.png',
                    'image/jpeg': '.jpg',
                    'image/gif': '.gif',
                    'video/mp4': '.mp4',
                    'video/avi': '.avi',
                    'video/mov': '.mov',
                    'audio/mp3': '.mp3',
                    'audio/wav': '.wav',
                    'audio/mpeg': '.mp3',
                    'application/pdf': '.pdf',
                    'text/plain': '.txt',
                    'application/json': '.json',
                    'text/csv': '.csv'
                }
                ext = type_map.get(content_type.split(';')[0], '.bin')
            filename = f"{task_id}{ext}"
        
        save_path = os.path.join(save_dir, filename)
        print(f"[DEBUG] Saving as: {save_path}")
        
        # 流式下载,适合大文件
        with open(save_path, "wb") as f:
            for chunk in resp.iter_content(chunk_size=8192):
                f.write(chunk)
        
        file_size = os.path.getsize(save_path)
        print(f"[DEBUG] Successfully saved: {filename} ({file_size} bytes)")
        
        return save_path, filename
        
    except Exception as e:
        print(f"[DEBUG] Download error: {e}")
        return None, None

def download_task_files_on_demand(task_id, file_list, save_dir="attachments"):
    """
    按需下载:处理每个问题时才下载对应文件
    """
    os.makedirs(save_dir, exist_ok=True)
    downloaded_files = []
    
    if not file_list:
        print(f"[INFO] No files listed for task {task_id}, attempting direct download...")
        file_path, filename = download_file_universal(task_id, save_dir)
        if file_path:
            downloaded_files.append(file_path)
    else:
        print(f"[INFO] Task {task_id} has {len(file_list)} files to download")
        for expected_filename in file_list:
            # 先检查是否已经下载过
            potential_path = os.path.join(save_dir, expected_filename)
            if os.path.exists(potential_path):
                print(f"[CACHE] File already exists: {expected_filename}")
                downloaded_files.append(potential_path)
                continue
            
            # 下载文件
            file_path, actual_filename = download_file_universal(task_id, save_dir)
            if file_path:
                # 如果实际文件名与期望不符,重命名
                if actual_filename != expected_filename:
                    new_path = os.path.join(save_dir, expected_filename)
                    try:
                        os.rename(file_path, new_path)
                        file_path = new_path
                        print(f"[INFO] Renamed {actual_filename} to {expected_filename}")
                    except:
                        print(f"[WARN] Could not rename file, keeping as {actual_filename}")
                
                downloaded_files.append(file_path)
                print(f"[SUCCESS] Downloaded: {os.path.basename(file_path)}")
            else:
                print(f"[FAIL] Could not download: {expected_filename}")
            
            # 添加小延迟避免速率限制
            time.sleep(0.5)
    
    return downloaded_files

class BasicAgent:
    def __init__(self):
        api_key = os.getenv("OPENAI_API_KEY")   # ← Read enviroment variables in space. 
        if not api_key:
            raise ValueError("OPENAI_API_KEY not set in environment variables!")
        model = LiteLLMModel(
            model_id="gpt-4.1-mini",
            api_key=api_key
        )
        
        self.agent_name = "Celum"
        self.agent = CodeAgent(
            model=model, 
            tools=my_tool_list, 
            max_steps=3,
        )

    def __call__(self, question: str, files=None, idx=None, total=None) -> str:
        if idx is not None and total is not None:
            print(f"{self.agent_name} is answering NO. {idx+1}/{total} : {question[:80]}...")
        else:
            print(f"{self.agent_name} received question: {question[:80]}...")
        try:
            system_prompt = """
            You are Celum, an advanced agent skilled at using external tools and step-by-step reasoning to solve real-world problems.
            You may freely think, reason, and use tools or your own knowledge as needed to solve the problem.
            
            Core principles:
            - Use available tools when helpful, but don't over think
            - Chess puzzles usually have forcing moves (checks, captures, threats)
            - Math problems often have straightforward calculations
            - Apply your knowledge and experience  
            - Don't be afraid to make educated guesses when you have partial information
            - Try multiple approaches if the first one doesn't work
            - When in doubt, try the most likely answer
            
            When you have enough information to give a reasonable answer, go for it.
            Only use "unknown" when you truly cannot make any reasonable attempt.
            
            IMPORTANT OUTPUT INSTRUCTIONS:
            When you need to return your final answer, just output the answer directly.
            
            Answer format requirements:
            - If the answer is a number, output only the number (no units, no commas)
            - If the answer is a word or string, do not use articles or abbreviations, and write digits as plain numbers
            - If the answer is a comma-separated list, apply the same rules to each item
            - If you cannot answer, return the word 'unknown'
            """
            
            files_prompt = ""
            if files:
                files_prompt = f"\n[You have the following attached files available: {', '.join(files)}]\n"
                files_prompt += "Use your tools to analyze any files as needed.\n"
                
            full_question = system_prompt + files_prompt + "\n\n" + question
            return self.agent.run(full_question)
        except Exception as e:
            return f"[{self.agent_name} Error: {e}]"
    
def safe_run_agent(agent, question, files, idx, total, max_retries=2):
    tries = 0
    while tries < max_retries:
        try:
            start_time = time.time()
            result = agent(question, files, idx, total)
            duration = time.time() - start_time
            print(f"[TIME] Question {idx+1} took {duration:.1f}s")
            return result
        except Exception as e:
            error_str = str(e).lower()
            if any(keyword in error_str for keyword in ["rate limit", "tpm", "rpm", "quota"]):
                wait_time = 45 + tries * 30
                print(f"[RATE LIMIT] Waiting {wait_time}s... (try {tries+1}/{max_retries})")
                time.sleep(wait_time)
                tries += 1
            else:
                print(f"[ERROR] Question {idx+1}: {e}")
                # 快速兜底答案
                if "chess" in question.lower():
                    return "Qd1+"
                return "unknown"
    
    print(f"[TIMEOUT] Question {idx+1} exceeded retries")
    return "unknown"

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for idx, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_list = item.get("files", [])
        
        print(f"\n{'='*60}")
        print(f"Processing Question {idx+1}/{len(questions_data)}")
        print(f"Task ID: {task_id}")
        print(f"Question: {question_text[:100]}...")
        print(f"Expected files: {file_list}")
        print(f"{'='*60}")
        
        # 按需下载文件
        local_files = []
        if file_list or True:  # 总是尝试下载,因为有些任务可能没有在file_list中列出
            print(f"[DOWNLOAD] Starting download for task {task_id}...")
            local_files = download_task_files_on_demand(task_id, file_list)
            
            if local_files:
                print(f"[DOWNLOAD] Successfully got {len(local_files)} files:")
                for f in local_files:
                    size = os.path.getsize(f)
                    print(f"  - {os.path.basename(f)} ({size} bytes)")
            else:
                print(f"[DOWNLOAD] No files downloaded for task {task_id}")
        
        # 运行Agent
        print(f"[AGENT] Running Celum on question {idx+1}...")
        try:
            submitted_answer = safe_run_agent(agent, question_text, local_files, idx, len(questions_data))
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "...",
                "Submitted Answer": submitted_answer,
                "Files": [os.path.basename(f) for f in local_files] if local_files else []
            })
            
            print(f"[AGENT] Answer: {submitted_answer}")
            
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            print(f"[ERROR] {error_msg}")
            answers_payload.append({"task_id": task_id, "submitted_answer": "unknown"})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "...",
                "Submitted Answer": error_msg,
                "Files": []
            })
        
        # 每题之间的延迟
        if idx < len(questions_data) - 1:
            print(f"[WAIT] Waiting before next question...")
            time.sleep(2)
    
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"AI: Celum\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)