Ankan Ghosh
commited on
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +305 -0
- click.wav +0 -0
- input-video.mp4 +3 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
input-video.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import time
|
| 4 |
+
import os
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
try:
|
| 9 |
+
from pygame import mixer
|
| 10 |
+
|
| 11 |
+
mixer_init = True
|
| 12 |
+
except ModuleNotFoundError:
|
| 13 |
+
mixer = None
|
| 14 |
+
mixer_init = False
|
| 15 |
+
|
| 16 |
+
# ------------------------------------------------------------------------------
|
| 17 |
+
# 1. Initializations.
|
| 18 |
+
# ------------------------------------------------------------------------------
|
| 19 |
+
|
| 20 |
+
# Initialize counter for the number of blinks detected.
|
| 21 |
+
BLINK = 0
|
| 22 |
+
|
| 23 |
+
# Model file paths.
|
| 24 |
+
MODEL_PATH = "./model/res10_300x300_ssd_iter_140000.caffemodel"
|
| 25 |
+
CONFIG_PATH = "./model/deploy.prototxt"
|
| 26 |
+
LBF_MODEL = "./model/lbfmodel.yaml"
|
| 27 |
+
|
| 28 |
+
# Create a face detector network instance.
|
| 29 |
+
net = cv2.dnn.readNetFromCaffe(CONFIG_PATH, MODEL_PATH)
|
| 30 |
+
|
| 31 |
+
# Create the landmark detector instance.
|
| 32 |
+
landmarkDetector = cv2.face.createFacemarkLBF()
|
| 33 |
+
landmarkDetector.loadModel(LBF_MODEL)
|
| 34 |
+
|
| 35 |
+
# ------------------------------------------------------------------------------
|
| 36 |
+
# 2. Function definitions.
|
| 37 |
+
# ------------------------------------------------------------------------------
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def detect_faces(image, detection_threshold=0.70):
|
| 41 |
+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), [104, 117, 123])
|
| 42 |
+
net.setInput(blob)
|
| 43 |
+
detections = net.forward()
|
| 44 |
+
|
| 45 |
+
faces = []
|
| 46 |
+
img_h = image.shape[0]
|
| 47 |
+
img_w = image.shape[1]
|
| 48 |
+
|
| 49 |
+
for detection in detections[0][0]:
|
| 50 |
+
if detection[2] >= detection_threshold:
|
| 51 |
+
left = detection[3] * img_w
|
| 52 |
+
top = detection[4] * img_h
|
| 53 |
+
right = detection[5] * img_w
|
| 54 |
+
bottom = detection[6] * img_h
|
| 55 |
+
|
| 56 |
+
face_w = right - left
|
| 57 |
+
face_h = bottom - top
|
| 58 |
+
|
| 59 |
+
face_roi = (left, top, face_w, face_h)
|
| 60 |
+
faces.append(face_roi)
|
| 61 |
+
|
| 62 |
+
return np.array(faces).astype(int)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_primary_face(faces, frame_h, frame_w):
|
| 66 |
+
primary_face_index = None
|
| 67 |
+
face_height_max = 0
|
| 68 |
+
for idx in range(len(faces)):
|
| 69 |
+
face = faces[idx]
|
| 70 |
+
x1 = face[0]
|
| 71 |
+
y1 = face[1]
|
| 72 |
+
x2 = x1 + face[2]
|
| 73 |
+
y2 = y1 + face[3]
|
| 74 |
+
if x1 > frame_w or y1 > frame_h or x2 > frame_w or y2 > frame_h:
|
| 75 |
+
continue
|
| 76 |
+
if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
# Prioritize the face with the maximum height.
|
| 80 |
+
if face[3] > face_height_max:
|
| 81 |
+
primary_face_index = idx
|
| 82 |
+
face_height_max = face[3]
|
| 83 |
+
|
| 84 |
+
if primary_face_index is not None:
|
| 85 |
+
primary_face = faces[primary_face_index]
|
| 86 |
+
else:
|
| 87 |
+
primary_face = None
|
| 88 |
+
|
| 89 |
+
return primary_face
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def visualize_eyes(landmarks, frame):
|
| 93 |
+
for i in range(36, 48):
|
| 94 |
+
cv2.circle(frame, tuple(landmarks[i].astype("int")), 2, (0, 255, 0), -1)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def get_eye_aspect_ratio(landmarks):
|
| 98 |
+
vert_dist_1right = calculate_distance(landmarks[37], landmarks[41])
|
| 99 |
+
vert_dist_2right = calculate_distance(landmarks[38], landmarks[40])
|
| 100 |
+
vert_dist_1left = calculate_distance(landmarks[43], landmarks[47])
|
| 101 |
+
vert_dist_2left = calculate_distance(landmarks[44], landmarks[46])
|
| 102 |
+
horz_dist_right = calculate_distance(landmarks[36], landmarks[39])
|
| 103 |
+
horz_dist_left = calculate_distance(landmarks[42], landmarks[45])
|
| 104 |
+
EAR_left = (vert_dist_1left + vert_dist_2left) / (2.0 * horz_dist_left)
|
| 105 |
+
EAR_right = (vert_dist_1right + vert_dist_2right) / (2.0 * horz_dist_right)
|
| 106 |
+
ear = (EAR_left + EAR_right) / 2
|
| 107 |
+
return ear
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def calculate_distance(A, B):
|
| 111 |
+
distance = ((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2) ** 0.5
|
| 112 |
+
return distance
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def play(file):
|
| 116 |
+
if mixer_init:
|
| 117 |
+
mixer.init()
|
| 118 |
+
sound = mixer.Sound(file)
|
| 119 |
+
sound.play()
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# ------------------------------------------------------------------------------
|
| 123 |
+
# 3. Processing function (to be used in Gradio).
|
| 124 |
+
# ------------------------------------------------------------------------------
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def process_video(input_video):
|
| 128 |
+
|
| 129 |
+
# Generate unique filenames for the outputs
|
| 130 |
+
out_video_filename = "processed_video.mp4"
|
| 131 |
+
out_plot_filename = "ear_plot.png"
|
| 132 |
+
|
| 133 |
+
cap = cv2.VideoCapture(input_video)
|
| 134 |
+
ret, frame = cap.read()
|
| 135 |
+
if not ret:
|
| 136 |
+
print("Cannot read the input video.")
|
| 137 |
+
return None, None
|
| 138 |
+
|
| 139 |
+
frame_h = frame.shape[0]
|
| 140 |
+
frame_w = frame.shape[1]
|
| 141 |
+
|
| 142 |
+
# Initialize writer for processed video
|
| 143 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 144 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
|
| 145 |
+
out_writer = cv2.VideoWriter(out_video_filename, fourcc, fps, (frame_w, frame_h))
|
| 146 |
+
|
| 147 |
+
# Calibration
|
| 148 |
+
frame_count = 0
|
| 149 |
+
frame_calib = 30 # Number of frames to use for threshold calibration.
|
| 150 |
+
sum_ear = 0
|
| 151 |
+
|
| 152 |
+
BLINK = 0
|
| 153 |
+
state_prev = state_curr = "open"
|
| 154 |
+
|
| 155 |
+
ear_values = []
|
| 156 |
+
|
| 157 |
+
while True:
|
| 158 |
+
ret, frame = cap.read()
|
| 159 |
+
if not ret:
|
| 160 |
+
break
|
| 161 |
+
|
| 162 |
+
# Detect Face.
|
| 163 |
+
faces = detect_faces(frame, detection_threshold=0.90)
|
| 164 |
+
|
| 165 |
+
if len(faces) > 0:
|
| 166 |
+
# Use primary face
|
| 167 |
+
primary_face = get_primary_face(faces, frame_h, frame_w)
|
| 168 |
+
|
| 169 |
+
if primary_face is not None:
|
| 170 |
+
cv2.rectangle(
|
| 171 |
+
frame,
|
| 172 |
+
(primary_face[0], primary_face[1]),
|
| 173 |
+
(primary_face[0] + primary_face[2], primary_face[1] + primary_face[3]),
|
| 174 |
+
(0, 255, 0),
|
| 175 |
+
3,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Detect Landmarks
|
| 179 |
+
retval, landmarksList = landmarkDetector.fit(frame, np.expand_dims(primary_face, 0))
|
| 180 |
+
|
| 181 |
+
if retval:
|
| 182 |
+
landmarks = landmarksList[0][0]
|
| 183 |
+
|
| 184 |
+
# Display detections.
|
| 185 |
+
visualize_eyes(landmarks, frame)
|
| 186 |
+
|
| 187 |
+
# Get EAR
|
| 188 |
+
ear = get_eye_aspect_ratio(landmarks)
|
| 189 |
+
ear_values.append(ear)
|
| 190 |
+
|
| 191 |
+
if frame_count < frame_calib:
|
| 192 |
+
frame_count += 1
|
| 193 |
+
sum_ear += ear
|
| 194 |
+
elif frame_count == frame_calib:
|
| 195 |
+
frame_count += 1
|
| 196 |
+
avg_ear = sum_ear / frame_count
|
| 197 |
+
HIGHER_TH = 0.90 * avg_ear
|
| 198 |
+
LOWER_TH = 0.80 * HIGHER_TH
|
| 199 |
+
print("SET EAR HIGH: ", HIGHER_TH)
|
| 200 |
+
print("SET EAR LOW: ", LOWER_TH)
|
| 201 |
+
else:
|
| 202 |
+
if ear < LOWER_TH:
|
| 203 |
+
state_curr = "closed"
|
| 204 |
+
elif ear > HIGHER_TH:
|
| 205 |
+
state_curr = "open"
|
| 206 |
+
|
| 207 |
+
if state_prev == "closed" and state_curr == "open":
|
| 208 |
+
BLINK += 1
|
| 209 |
+
if mixer_init:
|
| 210 |
+
play("./click.wav")
|
| 211 |
+
|
| 212 |
+
state_prev = state_curr
|
| 213 |
+
|
| 214 |
+
cv2.putText(
|
| 215 |
+
frame,
|
| 216 |
+
f"Blink Counter: {BLINK}",
|
| 217 |
+
(10, 80),
|
| 218 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 219 |
+
1.5,
|
| 220 |
+
(0, 0, 255),
|
| 221 |
+
4,
|
| 222 |
+
cv2.LINE_AA,
|
| 223 |
+
)
|
| 224 |
+
else:
|
| 225 |
+
# No valid face detected
|
| 226 |
+
pass
|
| 227 |
+
else:
|
| 228 |
+
# No faces
|
| 229 |
+
pass
|
| 230 |
+
frame_out_final = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 231 |
+
out_writer.write(frame)
|
| 232 |
+
|
| 233 |
+
yield frame_out_final, None, None
|
| 234 |
+
|
| 235 |
+
cap.release()
|
| 236 |
+
out_writer.release()
|
| 237 |
+
|
| 238 |
+
# Plot EAR values if collected
|
| 239 |
+
if ear_values:
|
| 240 |
+
plt.figure(figsize=(10, 5.625))
|
| 241 |
+
plt.plot(ear_values, label="EAR")
|
| 242 |
+
plt.title("Eye Aspect Ratio (EAR) over time")
|
| 243 |
+
plt.xlabel("Frame Index")
|
| 244 |
+
plt.ylabel("EAR")
|
| 245 |
+
plt.legend()
|
| 246 |
+
plt.grid(True)
|
| 247 |
+
plt.savefig(out_plot_filename)
|
| 248 |
+
plt.close()
|
| 249 |
+
else:
|
| 250 |
+
out_plot_filename = None
|
| 251 |
+
|
| 252 |
+
yield None, out_video_filename, out_plot_filename
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
# ------------------------------------------------------------------------------
|
| 256 |
+
# 4. Gradio UI
|
| 257 |
+
# ------------------------------------------------------------------------------
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def process_gradio(video_file):
|
| 261 |
+
if video_file is None:
|
| 262 |
+
return None, None, None
|
| 263 |
+
|
| 264 |
+
video_path = video_file
|
| 265 |
+
output_frames = None
|
| 266 |
+
processed_video = None
|
| 267 |
+
plot_img = None
|
| 268 |
+
|
| 269 |
+
# Process video using generator
|
| 270 |
+
for frame_out, processed_video_path, plot_path in process_video(video_path):
|
| 271 |
+
if frame_out is not None:
|
| 272 |
+
output_frames = frame_out # Update frames dynamically
|
| 273 |
+
yield output_frames, None, None # Gradio updates frames step-by-step
|
| 274 |
+
else:
|
| 275 |
+
processed_video = processed_video_path
|
| 276 |
+
plot_img = plot_path
|
| 277 |
+
|
| 278 |
+
# Final yield with processed video and EAR plot
|
| 279 |
+
yield None, processed_video, plot_img
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
with gr.Blocks() as demo:
|
| 283 |
+
gr.Markdown("# Blink Detection with OpenCV")
|
| 284 |
+
gr.Markdown("Upload a video to detect blinks and view the EAR plot after processing.")
|
| 285 |
+
video_input = gr.Video(label="Input Video")
|
| 286 |
+
process_btn = gr.Button("Process")
|
| 287 |
+
output_frames = gr.Image(label="Output Frames")
|
| 288 |
+
with gr.Row():
|
| 289 |
+
processed_video = gr.Video(label="Processed Video")
|
| 290 |
+
ear_plot = gr.Image(label="EAR Plot")
|
| 291 |
+
process_btn.click(process_gradio, inputs=video_input, outputs=[output_frames, processed_video, ear_plot])
|
| 292 |
+
|
| 293 |
+
examples = [
|
| 294 |
+
["./input-video.mp4"],
|
| 295 |
+
]
|
| 296 |
+
|
| 297 |
+
with gr.Row():
|
| 298 |
+
gr.Examples(
|
| 299 |
+
examples=examples,
|
| 300 |
+
inputs=[video_input],
|
| 301 |
+
label="Load Example Video",
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
if __name__ == "__main__":
|
| 305 |
+
demo.launch()
|
click.wav
ADDED
|
Binary file (195 kB). View file
|
|
|
input-video.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c1bdb3d8302bbb63bc5fb8137e2b532182bb3126261bebd5f1d6cd48d52dfab
|
| 3 |
+
size 38229628
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-contrib-python
|
| 2 |
+
gradio
|
| 3 |
+
matplotlib
|
| 4 |
+
pygame
|