Spaces:
Sleeping
Sleeping
File size: 6,454 Bytes
dbe2c62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import fitz
from Config import Configs
from Config import ModelLoader as ML
from Libraries import Common_MyUtils as MU
from Libraries import PDF_ExtractData as ExtractData, PDF_MergeData as MergeData, PDF_QualityCheck as QualityCheck
from Libraries import Json_GetStructures as GetStructures, Json_ChunkMaster as ChunkMaster, Json_SchemaExt as SchemaExt
from Libraries import Faiss_Embedding as F_Embedding
Checkpoint = "vinai/bartpho-syllable"
service = "Categories"
inputs = "Categories.json"
JsonKey = "paragraphs"
JsonField = "Text"
config = Configs.ConfigValues(service=service, inputs=inputs)
inputPath = config["inputPath"]
PdfPath = config["PdfPath"]
DocPath = config["DocPath"]
exceptPath = config["exceptPath"]
markerPath = config["markerPath"]
statusPath = config["statusPath"]
RawDataPath = config["RawDataPath"]
RawLvlsPath = config["RawLvlsPath"]
StructsPath = config["StructsPath"]
SegmentPath = config["SegmentPath"]
SchemaPath = config["SchemaPath"]
FaissPath = config["FaissPath"]
MappingPath = config["MappingPath"]
MapDataPath = config["MapDataPath"]
MapChunkPath = config["MapChunkPath"]
MetaPath = config["MetaPath"]
DATA_KEY = config["DATA_KEY"]
EMBE_KEY = config["EMBE_KEY"]
SEARCH_EGINE = config["SEARCH_EGINE"]
RERANK_MODEL = config["RERANK_MODEL"]
RESPON_MODEL = config["RESPON_MODEL"]
EMBEDD_MODEL = config["EMBEDD_MODEL"]
CHUNKS_MODEL = config["CHUNKS_MODEL"]
SUMARY_MODEL = config["SUMARY_MODEL"]
WORD_LIMIT = config["WORD_LIMIT"]
MODEL_DIR = "Models"
MODEL_ENCODE = "Sentence_Transformer"
MODEL_SUMARY = "Summarizer"
EMBEDD_CACHED_MODEL = f"{MODEL_DIR}/{MODEL_ENCODE}/{EMBEDD_MODEL}"
CHUNKS_CACHED_MODEL = F"{MODEL_DIR}/{MODEL_ENCODE}/{CHUNKS_MODEL}"
SUMARY_CACHED_MODEL = f"{MODEL_DIR}/{MODEL_SUMARY}/{SUMARY_MODEL}"
MAX_INPUT = 1024
MAX_TARGET = 256
MIN_TARGET = 64
TRAIN_EPOCHS = 3
LEARNING_RATE = 3e-5
WEIGHT_DECAY = 0.01
BATCH_SIZE = 4
def loadHardcodes(file_path, wanted=None):
data = MU.read_json(file_path)
if "items" not in data:
return
result = {}
for item in data["items"]:
key = item["key"]
if (not wanted) or (key in wanted):
result[key] = item["values"]
return result
exceptData = loadHardcodes(exceptPath, wanted=["common_words", "proper_names", "abbreviations"])
markerData = loadHardcodes(markerPath, wanted=["keywords", "markers"])
statusData = loadHardcodes(statusPath, wanted=["brackets", "sentence_ends"])
Loader = ML.ModelLoader()
indexer, embeddDevice = Loader.load_encoder(EMBEDD_MODEL, EMBEDD_CACHED_MODEL)
chunker, chunksDevice = Loader.load_encoder(CHUNKS_MODEL, CHUNKS_CACHED_MODEL)
dataExtractor = ExtractData.B1Extractor(
exceptData,
markerData,
statusData,
proper_name_min_count=10
)
structAnalyzer = GetStructures.StructureAnalyzer(
verbose=True
)
chunkBuilder = ChunkMaster.ChunkBuilder()
schemaExt = SchemaExt.JSONSchemaExtractor(
list_policy="first",
verbose=True
)
faissIndexer = F_Embedding.DirectFaissIndexer(
indexer=indexer,
device=str(embeddDevice),
batch_size=32,
show_progress=True,
flatten_mode="split",
join_sep="\n",
allowed_schema_types=("string", "array", "dict"),
max_chars_per_text=2000,
normalize=True,
verbose=False
)
def extractRun(pdf_doc):
extractedData = dataExtractor.extract(pdf_doc)
RawDataDict = MergeData.mergeLinesToParagraphs(extractedData)
return RawDataDict
def structRun(RawDataDict):
markers = structAnalyzer.extract_markers(RawDataDict)
structures = structAnalyzer.build_structures(markers)
dedup = structAnalyzer.deduplicate(structures)
top = structAnalyzer.select_top(dedup)
RawLvlsDict = structAnalyzer.extend_top(top, dedup)
print(MU.json_convert(RawLvlsDict, pretty=True))
return RawLvlsDict
def chunkRun(RawLvlsDict=None, RawDataDict=None):
StructsDict = chunkBuilder.build(RawLvlsDict, RawDataDict)
return StructsDict
def SegmentRun(StructsDict, RawLvlsDict):
first_key = list(RawLvlsDict[0].keys())[0]
SegmentDict = []
for item in StructsDict:
value = item.get(first_key)
if not value: continue
if isinstance(value, list):
value = " ".join(v.strip() for v in value if isinstance(v, str) and v.strip().lower() != "none")
if value.strip():
SegmentDict.append(item)
for i, item in enumerate(SegmentDict, start=1):
item["Index"] = i
return SegmentDict
def schemaRun(SegmentDict):
SchemaDict = schemaExt.schemaRun(SegmentDict=SegmentDict)
print(SchemaDict)
return SchemaDict
def Indexing(SchemaDict):
Mapping, MapData = faissIndexer.build_from_json(
SegmentPath=SegmentPath,
SchemaDict=SchemaDict,
FaissPath=FaissPath,
MapDataPath=MapDataPath,
MappingPath=MappingPath,
MapChunkPath=MapChunkPath
)
return Mapping, MapData
mode = "json"
def Prepare():
if mode == "pdf":
print("\nLoading File...")
pdf_doc = fitz.open(PdfPath)
checker = QualityCheck.PDFQualityChecker()
is_good, info = checker.evaluate(pdf_doc)
print(info["status"])
if not is_good:
print("⚠️ Bỏ qua file này.")
return None, None, None, None
else:
print("✅ Tiếp tục xử lý.")
print("\nExtracting...")
RawDataDict = extractRun(pdf_doc)
MU.write_json(RawDataDict, RawDataPath, indent=1)
pdf_doc.close()
print("\nGetting Struct...")
RawLvlsDict = structRun(RawDataDict)
MU.write_json(RawLvlsDict, RawLvlsPath, indent=2)
print("\nChunking...")
StructsDict = chunkRun(RawLvlsDict, RawDataDict)
MU.write_json(StructsDict, StructsPath, indent=2)
print("\nSegmenting...")
SegmentDict = SegmentRun(StructsDict, RawLvlsDict)
MU.write_json(SegmentDict, SegmentPath, indent=2)
else:
SegmentDict = MU.read_json(SegmentPath)
print("\nCreating Schema...")
SchemaDict = schemaRun(SegmentDict)
MU.write_json(SchemaDict, SchemaPath, indent=2)
print("\nEmbedding...")
Mapping, MapData = Indexing(SchemaDict)
MU.write_json(Mapping, MappingPath, indent=2)
MU.write_json(MapData, MapDataPath, indent=2)
print("\nCompleted!")
return SegmentDict, SchemaDict, Mapping, MapData
SegmentDict, SchemaDict, Mapping, MapData = Prepare() |