Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer, util
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from preprocess import preprocess
|
| 7 |
+
|
| 8 |
+
# File paths
|
| 9 |
+
csv_file_path = 'courses_with_embeddings.csv'
|
| 10 |
+
embeddings_file_path = 'course_embeddings.npy'
|
| 11 |
+
|
| 12 |
+
# Function to check if data files exist and contain data
|
| 13 |
+
def check_files_exist():
|
| 14 |
+
if os.path.exists(csv_file_path) and os.path.exists(embeddings_file_path):
|
| 15 |
+
# Check if CSV and Numpy files have data
|
| 16 |
+
if os.path.getsize(csv_file_path) > 0 and os.path.getsize(embeddings_file_path) > 0:
|
| 17 |
+
return True
|
| 18 |
+
return False
|
| 19 |
+
|
| 20 |
+
# Run preprocess if files don't exist or are empty
|
| 21 |
+
if not check_files_exist():
|
| 22 |
+
preprocess()
|
| 23 |
+
|
| 24 |
+
# Load data and embeddings
|
| 25 |
+
df = pd.read_csv(csv_file_path)
|
| 26 |
+
embeddings = np.load(embeddings_file_path)
|
| 27 |
+
|
| 28 |
+
# Load the pre-trained model
|
| 29 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 30 |
+
|
| 31 |
+
# Search function
|
| 32 |
+
def search_courses(query, top_k=5):
|
| 33 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 34 |
+
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 35 |
+
top_results = similarities.topk(k=top_k)
|
| 36 |
+
results = [df.iloc[idx.item()] for idx in top_results.indices]
|
| 37 |
+
return results
|
| 38 |
+
|
| 39 |
+
def main():
|
| 40 |
+
# Streamlit interface
|
| 41 |
+
st.title("Smart Course Search")
|
| 42 |
+
st.markdown(
|
| 43 |
+
"""
|
| 44 |
+
### Find the Most Relevant Free Courses on Analytics Vidhya
|
| 45 |
+
Welcome to **Smart Course Search**! Simply type in your area of interest, and we'll show you the best courses available.
|
| 46 |
+
"""
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# User input for the search query
|
| 50 |
+
query = st.text_input("Enter your search query:")
|
| 51 |
+
|
| 52 |
+
if query:
|
| 53 |
+
st.markdown(f"### Showing results for: *'{query}'*")
|
| 54 |
+
results = search_courses(query)
|
| 55 |
+
for result in results:
|
| 56 |
+
st.markdown("---")
|
| 57 |
+
st.markdown(f"## {result['title']}")
|
| 58 |
+
st.markdown(f"**Description:**")
|
| 59 |
+
st.markdown(result['description'])
|
| 60 |
+
|
| 61 |
+
# Course Curriculum Section
|
| 62 |
+
if 'Course curriculum' in result:
|
| 63 |
+
st.markdown("### Course Curriculum:")
|
| 64 |
+
st.markdown(result['Course curriculum'])
|
| 65 |
+
|
| 66 |
+
# About the Instructor Section
|
| 67 |
+
if 'About the Instructor' in result:
|
| 68 |
+
st.markdown("### About the Instructor:")
|
| 69 |
+
st.write(result['About the Instructor'])
|
| 70 |
+
|
| 71 |
+
# Adding a button to enroll or learn more about the course
|
| 72 |
+
if 'url' in result:
|
| 73 |
+
st.markdown("**[Learn More and Enroll Here](%s)**" % result['url'])
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
main()
|