Spaces:
Sleeping
Sleeping
Commit
·
3bf7fd0
1
Parent(s):
665dc8e
Upload 3 files
Browse files- app.py +94 -0
- export/App_toolkit.pkl +3 -0
- xgb_model.json +0 -0
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# IMPORT LIBRARIES
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import pickle
|
| 6 |
+
import xgboost as xgb
|
| 7 |
+
from xgboost import XGBClassifier
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Function to load ML toolkit
|
| 12 |
+
def load_ml_toolkit(file_path):
|
| 13 |
+
with open(file_path, "rb") as file:
|
| 14 |
+
loaded_toolkit = pickle.load(file)
|
| 15 |
+
return loaded_toolkit
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Importing the toolkit
|
| 19 |
+
loaded_toolkit = load_ml_toolkit(r"export/App_toolkit.pkl")
|
| 20 |
+
|
| 21 |
+
encoder = loaded_toolkit["encoder"]
|
| 22 |
+
scaler = loaded_toolkit["scaler"]
|
| 23 |
+
|
| 24 |
+
# Import the model
|
| 25 |
+
model = XGBClassifier()
|
| 26 |
+
model.load_model(r"xgb_model.json")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
#Colmuns to work with
|
| 30 |
+
input_cols = ["tenure", "montant", "frequence_rech", "arpu_segment", "frequence", "data_volume", "regularity", "freq_top_pack"]
|
| 31 |
+
columns_to_scale = ["montant", "frequence_rech", "arpu_segment", "frequence", "data_volume", "regularity", "freq_top_pack"]
|
| 32 |
+
categoricals = ["tenure"]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Function to process inputs and return prediction
|
| 37 |
+
def process_and_predict(*args, encoder=encoder, scaler=scaler, model=model):
|
| 38 |
+
|
| 39 |
+
# Convert inputs into a DataFrame
|
| 40 |
+
input_data = pd.DataFrame([args], columns=input_cols)
|
| 41 |
+
|
| 42 |
+
# Encode the categorical column
|
| 43 |
+
input_data["tenure"] = encoder.transform(input_data["tenure"])
|
| 44 |
+
|
| 45 |
+
# Scale the numeric columns
|
| 46 |
+
input_data[columns_to_scale] = scaler.transform(input_data[columns_to_scale])
|
| 47 |
+
|
| 48 |
+
# Making the prediction
|
| 49 |
+
model_output = model.predict(input_data)
|
| 50 |
+
return {"Prediction: CHURN": float(model_output[0]), "Prediction: STAY": 1-float(model_output[0])}
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#App Interface
|
| 54 |
+
with gr.Blocks() as turn_on_the_gradio:
|
| 55 |
+
gr.Markdown("# 📞 EXPRESSO TELECOM CUSTOMER CHURN ☎️")
|
| 56 |
+
gr.Markdown('''
|
| 57 |
+
|
| 58 |
+
## WELCOME CHERISHED USER👋
|
| 59 |
+
|
| 60 |
+
### PLEASE GO AHEAD AND MAKE A PREDICTION 🙂''')
|
| 61 |
+
|
| 62 |
+
# Receiving Inputs
|
| 63 |
+
|
| 64 |
+
gr.Markdown("**SECTION ONE**")
|
| 65 |
+
gr.Markdown("**CUSTOMER NETWORK ACTTIVITIES**")
|
| 66 |
+
with gr.Row():
|
| 67 |
+
montant = gr.Slider(label="Top-up amount", minimum=20, step=1, interactive=True, value=1, maximum= 500000)
|
| 68 |
+
data_volume = gr.Slider(label="Number of connections", minimum=0, step=1, interactive=True, value=1, maximum= 2000000)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
frequence_rech = gr.Slider(label="Recharge Frequency", minimum=1, step=1, interactive=True, value=1, maximum=220)
|
| 73 |
+
freq_top_pack = gr.Slider(label="Top Package Activation Frequency", minimum=1, step=1, interactive=True, value=1, maximum=1050)
|
| 74 |
+
regularity = gr.Slider(label="Regularity (out of 90 days)", minimum=1, step=1, interactive=True, value=1, maximum=90)
|
| 75 |
+
tenure = gr.Dropdown(label="Tenure (time on the network)", choices=["D 3-6 month", "E 6-9 month", "F 9-12 month", "G 12-15 month", "H 15-18 month", "I 18-21 month", "J 21-24 month", "K > 24 month"], value="K > 24 month")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
gr.Markdown("**SECTION 2**")
|
| 79 |
+
gr.Markdown("**CUSTOMER INCOME DETAILS**")
|
| 80 |
+
with gr.Row():
|
| 81 |
+
arpu_segment = gr.Slider(label="Income over the last 90 days", step=1, maximum=287000, interactive=True)
|
| 82 |
+
frequence = gr.Slider(label="Number of times the customer has made an income", step=1, minimum=1, maximum=91, interactive=True)
|
| 83 |
+
|
| 84 |
+
# Output Prediction
|
| 85 |
+
output = gr.Label("...")
|
| 86 |
+
submit_button = gr.Button("Submit")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
submit_button.click(fn = process_and_predict,
|
| 91 |
+
outputs = output,
|
| 92 |
+
inputs=[tenure, montant, frequence_rech, arpu_segment, frequence, data_volume, regularity, freq_top_pack])
|
| 93 |
+
|
| 94 |
+
turn_on_the_gradio.launch(inbrowser= True)
|
export/App_toolkit.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:501d2fdba2a9b4e73eb95f028a2bef643a6ca8c4c1b8bd190fc22378632a0a81
|
| 3 |
+
size 362950
|
xgb_model.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|