Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # """gradio_app.ipynb | |
| # Automatically generated by Colaboratory. | |
| # Original file is located at | |
| # https://colab.research.google.com/drive/1u8oKw0KTptVWpY-cKFL87N2IDDrM4lTc | |
| # """ | |
| ## | |
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| import pickle | |
| from scipy.special import softmax | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig | |
| # Requirements | |
| model_path = "QuophyDzifa/Sentiment-Analysis-Model" | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| config = AutoConfig.from_pretrained(model_path) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| # Preprocess text (username and link placeholders) | |
| def preprocess(text): | |
| new_text = [] | |
| for t in text.split(" "): | |
| t = '@user' if t.startswith('@') and len(t) > 1 else t | |
| t = 'http' if t.startswith('http') else t | |
| new_text.append(t) | |
| return " ".join(new_text) | |
| def sent_analysis(text): | |
| text = preprocess(text) | |
| # PyTorch-based models | |
| encoded_input = tokenizer(text, return_tensors='pt') | |
| output = model(**encoded_input) | |
| scores_ = output[0][0].detach().numpy() | |
| scores_ = softmax(scores_) | |
| # Format output dict of scores | |
| labels = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'} | |
| scores = {labels[i]: float(s) for i, s in enumerate(scores_)} | |
| return scores | |
| demo = gr.Interface( | |
| fn=sent_analysis, | |
| inputs=gr.Textbox(placeholder="Share your thoughts on COVID vaccines..."), | |
| outputs="label", | |
| interpretation="default", | |
| examples=[ | |
| ["I feel confident about covid vaccines"], | |
| ["I do not like the covid vaccine"], | |
| ["I like the covid vaccines"], | |
| ["The covid vaccines are effective"] | |
| ], | |
| title="COVID Vaccine Sentiment Analysis", | |
| description="An AI model that predicts sentiment about COVID vaccines, providing labels and probabilities for 'NEGATIVE', 'NEUTRAL', and 'POSITIVE' sentiments.", | |
| theme="default", | |
| live=True | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch("0.0.0.0:7860") | |