Delete app.py
Browse files
app.py
DELETED
|
@@ -1,119 +0,0 @@
|
|
| 1 |
-
import time
|
| 2 |
-
from options.test_options import TestOptions
|
| 3 |
-
from data.data_loader_test import CreateDataLoader
|
| 4 |
-
from models.networks import ResUnetGenerator, load_checkpoint
|
| 5 |
-
from models.afwm import AFWM
|
| 6 |
-
import torch.nn as nn
|
| 7 |
-
import os
|
| 8 |
-
import numpy as np
|
| 9 |
-
import torch
|
| 10 |
-
import cv2
|
| 11 |
-
import torch.nn.functional as F
|
| 12 |
-
|
| 13 |
-
import io
|
| 14 |
-
from PIL import Image
|
| 15 |
-
from flask import Flask, jsonify, request
|
| 16 |
-
from tqdm.auto import tqdm
|
| 17 |
-
|
| 18 |
-
app = Flask(__name__)
|
| 19 |
-
|
| 20 |
-
opt = TestOptions().parse()
|
| 21 |
-
|
| 22 |
-
# list human-cloth pairs
|
| 23 |
-
with open('demo.txt', 'w') as file:
|
| 24 |
-
lines = [f'input.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')]
|
| 25 |
-
file.writelines(lines)
|
| 26 |
-
|
| 27 |
-
warp_model = AFWM("", 3)
|
| 28 |
-
warp_model.eval()
|
| 29 |
-
warp_model.cuda()
|
| 30 |
-
load_checkpoint(warp_model, 'checkpoints/PFAFN/warp_model_final.pth')
|
| 31 |
-
|
| 32 |
-
gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d)
|
| 33 |
-
gen_model.eval()
|
| 34 |
-
gen_model.cuda()
|
| 35 |
-
load_checkpoint(gen_model, 'checkpoints/PFAFN/gen_model_final.pth')
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def save_cloth_transfers(image_bytes):
|
| 39 |
-
|
| 40 |
-
opt_name = 'demo'
|
| 41 |
-
opt_batchSize = 1
|
| 42 |
-
|
| 43 |
-
image = Image.open(io.BytesIO(image_bytes))
|
| 44 |
-
image.save('dataset/test_img/input.png')
|
| 45 |
-
|
| 46 |
-
data_loader = CreateDataLoader(opt)
|
| 47 |
-
dataset = data_loader.load_data()
|
| 48 |
-
dataset_size = len(data_loader)
|
| 49 |
-
|
| 50 |
-
start_epoch, epoch_iter = 1, 0
|
| 51 |
-
|
| 52 |
-
total_steps = (start_epoch - 1) * dataset_size + epoch_iter
|
| 53 |
-
step = 0
|
| 54 |
-
step_per_batch = dataset_size / opt_batchSize
|
| 55 |
-
|
| 56 |
-
for epoch in range(1, 2):
|
| 57 |
-
for i, data in tqdm(enumerate(dataset, start=epoch_iter)):
|
| 58 |
-
iter_start_time = time.time()
|
| 59 |
-
total_steps += opt_batchSize
|
| 60 |
-
epoch_iter += opt_batchSize
|
| 61 |
-
|
| 62 |
-
real_image = data['image']
|
| 63 |
-
clothes = data['clothes']
|
| 64 |
-
##edge is extracted from the clothes image with the built-in function in python
|
| 65 |
-
edge = data['edge']
|
| 66 |
-
edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int))
|
| 67 |
-
clothes = clothes * edge
|
| 68 |
-
|
| 69 |
-
flow_out = warp_model(real_image.cuda(), clothes.cuda())
|
| 70 |
-
warped_cloth, last_flow, = flow_out
|
| 71 |
-
warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1),
|
| 72 |
-
mode='bilinear', padding_mode='zeros')
|
| 73 |
-
|
| 74 |
-
gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1)
|
| 75 |
-
gen_outputs = gen_model(gen_inputs)
|
| 76 |
-
p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1)
|
| 77 |
-
p_rendered = torch.tanh(p_rendered)
|
| 78 |
-
m_composite = torch.sigmoid(m_composite)
|
| 79 |
-
m_composite = m_composite * warped_edge
|
| 80 |
-
p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
|
| 81 |
-
|
| 82 |
-
path = 'results/' + opt_name
|
| 83 |
-
os.makedirs(path, exist_ok=True)
|
| 84 |
-
sub_path = path + '/PFAFN'
|
| 85 |
-
os.makedirs(sub_path, exist_ok=True)
|
| 86 |
-
|
| 87 |
-
if step % 1 == 0:
|
| 88 |
-
a = real_image.float().cuda()
|
| 89 |
-
b = clothes.cuda()
|
| 90 |
-
c = p_tryon
|
| 91 |
-
combine = torch.cat([a[0], b[0], c[0]], 2).squeeze()
|
| 92 |
-
cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy() + 1) / 2
|
| 93 |
-
rgb = (cv_img * 255).astype(np.uint8)
|
| 94 |
-
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
|
| 95 |
-
cv2.imwrite(sub_path + '/' + str(step) + '.jpg', bgr)
|
| 96 |
-
|
| 97 |
-
step += 1
|
| 98 |
-
if epoch_iter >= dataset_size:
|
| 99 |
-
break
|
| 100 |
-
|
| 101 |
-
return True
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
@app.route('/predict')
|
| 105 |
-
def predict():
|
| 106 |
-
if request.method == 'POST':
|
| 107 |
-
print('#'*100)
|
| 108 |
-
file = request.files['file']
|
| 109 |
-
image_bytes = file.read()
|
| 110 |
-
save_cloth_transfers(image_bytes=image_bytes)
|
| 111 |
-
return jsonify({'status': True})
|
| 112 |
-
else:
|
| 113 |
-
return jsonify({'message': "Only accept POST requests"})
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
if __name__ == '__main__':
|
| 117 |
-
app.run()
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|