Spaces:
Sleeping
Sleeping
新增 .gitignore 檔案並重構 app.py,整合 Stable Diffusion 與 BLIP 功能
Browse files- .gitignore +1 -0
- app.py +174 -145
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv/
|
app.py
CHANGED
|
@@ -1,154 +1,183 @@
|
|
| 1 |
-
import
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
if torch.cuda.is_available():
|
| 13 |
-
torch_dtype = torch.float16
|
| 14 |
-
else:
|
| 15 |
-
torch_dtype = torch.float32
|
| 16 |
-
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
-
|
| 20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
if randomize_seed:
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
-
generator = torch.Generator().manual_seed(seed)
|
| 40 |
-
|
| 41 |
-
image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
negative_prompt=negative_prompt,
|
| 44 |
-
guidance_scale=guidance_scale,
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
-
|
| 51 |
-
return image, seed
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
css = """
|
| 61 |
-
#col-container {
|
| 62 |
-
margin: 0 auto;
|
| 63 |
-
max-width: 640px;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(css=css) as demo:
|
| 68 |
-
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
| 70 |
-
|
| 71 |
-
with gr.Row():
|
| 72 |
-
prompt = gr.Text(
|
| 73 |
-
label="Prompt",
|
| 74 |
-
show_label=False,
|
| 75 |
-
max_lines=1,
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
-
container=False,
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
-
|
| 82 |
-
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
seed = gr.Slider(
|
| 93 |
-
label="Seed",
|
| 94 |
-
minimum=0,
|
| 95 |
-
maximum=MAX_SEED,
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
with gr.Row():
|
| 103 |
-
|
| 104 |
-
label="
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
step=
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
|
|
|
| 119 |
with gr.Row():
|
| 120 |
-
|
| 121 |
-
label="
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
step=0.
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
label="
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
],
|
| 150 |
-
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
|
|
| 1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from diffusers import StableDiffusionPipeline
|
| 6 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 7 |
+
|
| 8 |
+
# -----------------------------
|
| 9 |
+
# 環境與效能設定(CPU 友善)
|
| 10 |
+
# -----------------------------
|
| 11 |
+
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
| 12 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 13 |
+
|
| 14 |
+
# 限制 CPU 執行緒數(避免在 Spaces 上搶太多資源)
|
| 15 |
+
torch.set_num_threads(max(1, min(4, os.cpu_count() or 2)))
|
| 16 |
+
|
| 17 |
+
DEVICE = "cpu" # 若有 GPU 可改為 "cuda"
|
| 18 |
+
DTYPE = torch.float32
|
| 19 |
+
|
| 20 |
+
# -----------------------------
|
| 21 |
+
# 載入模型(首次啟動會自動下載)
|
| 22 |
+
# -----------------------------
|
| 23 |
+
|
| 24 |
+
def load_sd_pipe():
|
| 25 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 26 |
+
"runwayml/stable-diffusion-v1-5",
|
| 27 |
+
torch_dtype=DTYPE,
|
| 28 |
+
safety_checker=None, # 若課堂需要內容審查可改回預設 safety_checker
|
| 29 |
+
)
|
| 30 |
+
pipe = pipe.to(DEVICE)
|
| 31 |
+
# 省記憶體設定(對 CPU/低資源環境友好)
|
| 32 |
+
pipe.enable_attention_slicing()
|
| 33 |
+
pipe.enable_vae_tiling()
|
| 34 |
+
return pipe
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_blip():
|
| 38 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 39 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(DEVICE)
|
| 40 |
+
return processor, model
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
SD_PIPE = load_sd_pipe()
|
| 44 |
+
BLIP_PROCESSOR, BLIP_MODEL = load_blip()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# -----------------------------
|
| 48 |
+
# 功能:Text → Image(Stable Diffusion)
|
| 49 |
+
# -----------------------------
|
| 50 |
+
|
| 51 |
+
def txt2img(prompt: str, neg_prompt: str, steps: int, guidance: float, seed: int | None):
|
| 52 |
+
if not prompt or prompt.strip() == "":
|
| 53 |
+
return None, "請輸入 prompt。"
|
| 54 |
+
|
| 55 |
+
generator = None
|
| 56 |
+
if seed is not None and seed >= 0:
|
| 57 |
+
generator = torch.Generator(device=DEVICE).manual_seed(int(seed))
|
| 58 |
+
|
| 59 |
+
with torch.inference_mode():
|
| 60 |
+
image = SD_PIPE(
|
| 61 |
+
prompt=prompt,
|
| 62 |
+
negative_prompt=neg_prompt or None,
|
| 63 |
+
num_inference_steps=int(steps),
|
| 64 |
+
guidance_scale=float(guidance),
|
| 65 |
+
generator=generator,
|
| 66 |
+
height=512,
|
| 67 |
+
width=512,
|
| 68 |
+
).images[0]
|
| 69 |
+
return image, "生成完成"
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# -----------------------------
|
| 73 |
+
# 功能:Image → Text(BLIP Caption)
|
| 74 |
+
# -----------------------------
|
| 75 |
+
|
| 76 |
+
def caption_image(image: Image.Image, max_len: int = 50):
|
| 77 |
+
if image is None:
|
| 78 |
+
return "請先提供圖片"
|
| 79 |
+
|
| 80 |
+
image = image.convert("RGB")
|
| 81 |
+
inputs = BLIP_PROCESSOR(image, return_tensors="pt").to(DEVICE)
|
| 82 |
+
with torch.inference_mode():
|
| 83 |
+
out = BLIP_MODEL.generate(**inputs, max_length=int(max_len))
|
| 84 |
+
caption = BLIP_PROCESSOR.decode(out[0], skip_special_tokens=True)
|
| 85 |
+
return caption
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# -----------------------------
|
| 89 |
+
# 功能:一鍵串接(Text → Image → Caption)
|
| 90 |
+
# -----------------------------
|
| 91 |
+
|
| 92 |
+
def generate_and_caption(prompt: str, neg_prompt: str, steps: int, guidance: float, seed: int | None, max_len: int):
|
| 93 |
+
image, _ = txt2img(prompt, neg_prompt, steps, guidance, seed)
|
| 94 |
+
if image is None:
|
| 95 |
+
return None, ""
|
| 96 |
+
cap = caption_image(image, max_len=max_len)
|
| 97 |
+
return image, cap
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# -----------------------------
|
| 101 |
+
# Gradio 介面
|
| 102 |
+
# -----------------------------
|
| 103 |
+
with gr.Blocks(title="Stable Diffusion + BLIP", theme=gr.themes.Soft()) as demo:
|
| 104 |
+
gr.Markdown(
|
| 105 |
+
"""
|
| 106 |
+
# 🖼️ Stable Diffusion + 📝 BLIP
|
| 107 |
+
一個簡單的 Vision-Language 展示:**文字生圖** 與 **圖片描述**。\
|
| 108 |
+
在 CPU 上執行可能較慢,建議把步數調低(例如 15)。
|
| 109 |
+
"""
|
| 110 |
+
)
|
| 111 |
|
| 112 |
+
with gr.Tabs():
|
| 113 |
+
# Tab 1: Text -> Image
|
| 114 |
+
with gr.TabItem("Text → Image"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
with gr.Row():
|
| 116 |
+
with gr.Column(scale=1):
|
| 117 |
+
prompt = gr.Textbox(label="Prompt", placeholder="a cozy cat reading a book by the window, warm lighting")
|
| 118 |
+
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="blurry, low quality, watermark", value="")
|
| 119 |
+
steps = gr.Slider(5, 50, value=15, step=1, label="Steps (越高越慢)")
|
| 120 |
+
guidance = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="Guidance Scale")
|
| 121 |
+
seed = gr.Number(label="Seed(相同設定可重現,-1 表示隨機)", value=-1, precision=0)
|
| 122 |
+
run_btn = gr.Button("🚀 生成圖片", variant="primary")
|
| 123 |
+
with gr.Column(scale=1):
|
| 124 |
+
out_img = gr.Image(label="Generated Image", format="png")
|
| 125 |
+
status = gr.Markdown()
|
| 126 |
+
|
| 127 |
+
def _run_txt2img(prompt, neg_prompt, steps, guidance, seed):
|
| 128 |
+
with gr.Progress(track_tqdm=True) as prog:
|
| 129 |
+
prog(0, desc="準備模型…")
|
| 130 |
+
image, msg = txt2img(prompt, neg_prompt, steps, guidance, int(seed) if seed is not None else None)
|
| 131 |
+
prog(1, desc="完成")
|
| 132 |
+
return image, msg
|
| 133 |
+
|
| 134 |
+
run_btn.click(_run_txt2img, [prompt, neg_prompt, steps, guidance, seed], [out_img, status])
|
| 135 |
+
|
| 136 |
+
# Tab 2: Image -> Caption
|
| 137 |
+
with gr.TabItem("Image → Caption"):
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Column(scale=1):
|
| 140 |
+
in_img = gr.Image(label="Upload Image", type="pil")
|
| 141 |
+
max_len = gr.Slider(10, 100, value=50, step=5, label="Caption 長度上限")
|
| 142 |
+
cap_btn = gr.Button("📝 產生描述")
|
| 143 |
+
with gr.Column(scale=1):
|
| 144 |
+
caption_out = gr.Textbox(label="BLIP Caption")
|
| 145 |
+
|
| 146 |
+
cap_btn.click(caption_image, [in_img, max_len], [caption_out])
|
| 147 |
|
| 148 |
+
# Tab 3: 一鍵串接
|
| 149 |
+
with gr.TabItem("Generate → Caption"):
|
| 150 |
with gr.Row():
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
+
g_prompt = gr.Textbox(label="Prompt", placeholder="a cozy cat reading a book by the window, warm lighting")
|
| 153 |
+
g_neg_prompt = gr.Textbox(label="Negative Prompt", value="")
|
| 154 |
+
g_steps = gr.Slider(5, 50, value=15, step=1, label="Steps")
|
| 155 |
+
g_guidance = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="Guidance Scale")
|
| 156 |
+
g_seed = gr.Number(label="Seed(-1 為隨機)", value=-1, precision=0)
|
| 157 |
+
g_max_len = gr.Slider(10, 100, value=50, step=5, label="Caption 長度上限")
|
| 158 |
+
g_btn = gr.Button("✨ 一鍵生成 + 描述", variant="primary")
|
| 159 |
+
with gr.Column(scale=1):
|
| 160 |
+
g_img = gr.Image(label="Generated Image", format="png")
|
| 161 |
+
g_cap = gr.Textbox(label="BLIP Caption")
|
| 162 |
+
|
| 163 |
+
def _run_generate_and_caption(prompt, neg_prompt, steps, guidance, seed, max_len):
|
| 164 |
+
with gr.Progress(track_tqdm=True) as prog:
|
| 165 |
+
prog(0, desc="生成圖片中…")
|
| 166 |
+
image, caption = generate_and_caption(prompt, neg_prompt, steps, guidance, int(seed) if seed is not None else None, int(max_len))
|
| 167 |
+
prog(1, desc="完成")
|
| 168 |
+
return image, caption
|
| 169 |
+
|
| 170 |
+
g_btn.click(_run_generate_and_caption, [g_prompt, g_neg_prompt, g_steps, g_guidance, g_seed, g_max_len], [g_img, g_cap])
|
| 171 |
+
|
| 172 |
+
gr.Examples(
|
| 173 |
+
examples=[
|
| 174 |
+
["a cozy cat reading a book by the window, warm lighting", "", 15, 7.5, 42],
|
| 175 |
+
["cinematic portrait of an astronaut in a forest, film grain, bokeh", "", 20, 8.0, 1234],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
],
|
| 177 |
+
inputs=[prompt, neg_prompt, steps, guidance, seed],
|
| 178 |
+
label="Prompt 範例(可直接點選)",
|
| 179 |
)
|
| 180 |
|
| 181 |
if __name__ == "__main__":
|
| 182 |
+
# 在 HF Spaces 使用:不用 demo.launch(share=True)
|
| 183 |
+
demo.launch()
|