Spaces:
Sleeping
Sleeping
update with fixes
Browse files- app.py +71 -34
- requirements.txt +5 -3
app.py
CHANGED
|
@@ -1,40 +1,77 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
-
# Load
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def detect_ai_content(text):
|
| 11 |
-
result = classifier(text, labels)
|
| 12 |
-
scores = dict(zip(result["labels"], result["scores"]))
|
| 13 |
-
ai_score = scores["AI-generated text"]
|
| 14 |
-
human_score = scores["Human-written text"]
|
| 15 |
-
|
| 16 |
-
if ai_score > human_score:
|
| 17 |
-
verdict = "β οΈ This text looks AI-Generated"
|
| 18 |
-
else:
|
| 19 |
-
verdict = "β
This text looks Human-Written"
|
| 20 |
-
|
| 21 |
-
return {
|
| 22 |
-
"AI Probability": f"{ai_score:.2%}",
|
| 23 |
-
"Human Probability": f"{human_score:.2%}",
|
| 24 |
-
"Verdict": verdict
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
# Gradio Interface
|
| 28 |
-
demo = gr.Interface(
|
| 29 |
-
fn=detect_ai_content,
|
| 30 |
-
inputs=gr.Textbox(lines=10, placeholder="Paste text here..."),
|
| 31 |
-
outputs=[
|
| 32 |
-
gr.Label(num_top_classes=2, label="Probabilities"),
|
| 33 |
-
gr.Textbox(label="Verdict")
|
| 34 |
-
],
|
| 35 |
-
title="AI Content Detector",
|
| 36 |
-
description="Detect whether the given text is AI-generated or Human-written."
|
| 37 |
-
)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
if __name__ == "__main__":
|
| 40 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# πΉ Load model once and cache it
|
| 5 |
+
# This runs only at startup, not on every request
|
| 6 |
+
print("π Loading AI detection model...")
|
| 7 |
+
pipe = pipeline("text-classification", model="roberta-base-openai-detector")
|
| 8 |
+
print("β
Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def detect_text(text: str):
|
| 11 |
+
"""Detect whether the text is AI-generated or Human-written."""
|
| 12 |
+
if not text.strip():
|
| 13 |
+
return {}, "β Please enter some text."
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
results = pipe(text)
|
| 17 |
+
|
| 18 |
+
# Convert results into a probability dictionary
|
| 19 |
+
probs = {r["label"]: float(r["score"]) for r in results}
|
| 20 |
+
|
| 21 |
+
# Get label with highest probability
|
| 22 |
+
verdict = str(max(probs, key=probs.get))
|
| 23 |
+
|
| 24 |
+
# Make verdict more user-friendly
|
| 25 |
+
if verdict.upper() in ["LABEL_0", "FAKE", "AI"]:
|
| 26 |
+
verdict_message = "π€ This looks AI-generated"
|
| 27 |
+
elif verdict.upper() in ["LABEL_1", "REAL", "HUMAN"]:
|
| 28 |
+
verdict_message = "π This looks Human-written"
|
| 29 |
+
else:
|
| 30 |
+
verdict_message = f"β οΈ Unknown verdict: {verdict}"
|
| 31 |
+
|
| 32 |
+
return probs, verdict_message
|
| 33 |
+
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return {}, f"β Error: {str(e)}"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
with gr.Blocks() as demo:
|
| 39 |
+
gr.Markdown(
|
| 40 |
+
"""
|
| 41 |
+
# π΅οΈ AI Content Detector
|
| 42 |
+
Paste some text below and check if it's **AI-generated or Human-written**.
|
| 43 |
+
"""
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
with gr.Row():
|
| 47 |
+
text_input = gr.Textbox(
|
| 48 |
+
label="βοΈ Input Text",
|
| 49 |
+
lines=10,
|
| 50 |
+
placeholder="Paste text here..."
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
with gr.Row():
|
| 54 |
+
output_probs = gr.Label(label="π Probabilities")
|
| 55 |
+
output_verdict = gr.Textbox(label="β
Verdict", interactive=False)
|
| 56 |
+
|
| 57 |
+
with gr.Row():
|
| 58 |
+
submit_btn = gr.Button("π Submit", variant="primary")
|
| 59 |
+
clear_btn = gr.Button("π§Ή Clear")
|
| 60 |
+
|
| 61 |
+
# Submit action
|
| 62 |
+
submit_btn.click(
|
| 63 |
+
fn=detect_text,
|
| 64 |
+
inputs=text_input,
|
| 65 |
+
outputs=[output_probs, output_verdict],
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Clear action
|
| 69 |
+
clear_btn.click(
|
| 70 |
+
fn=lambda: ("", {}, ""),
|
| 71 |
+
inputs=[],
|
| 72 |
+
outputs=[text_input, output_probs, output_verdict],
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# πΉ Launch app
|
| 76 |
if __name__ == "__main__":
|
| 77 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
transformers
|
| 3 |
-
torch
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.36.1
|
| 2 |
+
transformers==4.43.3
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
accelerate>=0.33.0
|
| 5 |
+
safetensors>=0.4.2
|