Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,11 @@ import torch
|
|
| 4 |
import time
|
| 5 |
import spaces
|
| 6 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Model configurations
|
| 9 |
MODELS = {
|
|
@@ -21,82 +26,107 @@ MODELS = {
|
|
| 21 |
# Models that need the enable_thinking parameter
|
| 22 |
THINKING_ENABLED_MODELS = ["Spestly/Athena-R3X-4B"]
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
@spaces.GPU
|
| 25 |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
|
| 26 |
-
"""Generate response using
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 30 |
-
if tokenizer.pad_token is None:
|
| 31 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
-
model_id,
|
| 34 |
-
torch_dtype=torch.float16,
|
| 35 |
-
device_map="auto",
|
| 36 |
-
trust_remote_code=True
|
| 37 |
-
)
|
| 38 |
-
load_time = time.time() - start_time
|
| 39 |
-
print(f"✅ Model loaded in {load_time:.2f}s")
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def format_response_with_thinking(response):
|
| 96 |
"""Format response to handle <think></think> tags"""
|
| 97 |
-
# Check if response contains thinking tags
|
| 98 |
if '<think>' in response and '</think>' in response:
|
| 99 |
-
# Split the response into parts
|
| 100 |
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
|
| 101 |
match = re.search(pattern, response, re.DOTALL)
|
| 102 |
|
|
@@ -105,7 +135,6 @@ def format_response_with_thinking(response):
|
|
| 105 |
thinking_content = match.group(3).strip()
|
| 106 |
after_thinking = match.group(4).strip()
|
| 107 |
|
| 108 |
-
# Create HTML with collapsible thinking section
|
| 109 |
html = f"{before_thinking}\n"
|
| 110 |
html += f'<div class="thinking-container">'
|
| 111 |
html += f'<button class="thinking-toggle"><div class="thinking-icon"></div> Thinking completed <span class="dropdown-arrow">▼</span></button>'
|
|
@@ -115,43 +144,57 @@ def format_response_with_thinking(response):
|
|
| 115 |
|
| 116 |
return html
|
| 117 |
|
| 118 |
-
# If no thinking tags, return the original response
|
| 119 |
return response
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
|
| 122 |
"""Process a new message and update the chat history"""
|
| 123 |
-
# For debugging - print when the function is called
|
| 124 |
-
print(f"chat_submit function called with message: '{message}'")
|
| 125 |
-
|
| 126 |
-
if not message or not message.strip():
|
| 127 |
-
print("Empty message, returning without processing")
|
| 128 |
-
return "", history, conversation_state
|
| 129 |
-
|
| 130 |
-
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
|
| 131 |
try:
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
model_id, conversation_state, message, max_length, temperature
|
| 134 |
)
|
| 135 |
|
| 136 |
-
# Update
|
| 137 |
conversation_state.append({"role": "user", "content": message})
|
| 138 |
conversation_state.append({"role": "assistant", "content": response})
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
# Format the response for display
|
| 141 |
formatted_response = format_response_with_thinking(response)
|
| 142 |
|
| 143 |
# Update the visible chat history
|
| 144 |
-
history
|
| 145 |
-
|
|
|
|
| 146 |
|
| 147 |
-
return "", history, conversation_state
|
| 148 |
except Exception as e:
|
| 149 |
-
|
| 150 |
-
print(f"Error in chat_submit: {str(e)}")
|
| 151 |
-
print(traceback.format_exc())
|
| 152 |
error_message = f"Error: {str(e)}"
|
| 153 |
-
history.
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
css = """
|
| 157 |
.message {
|
|
@@ -223,53 +266,39 @@ css = """
|
|
| 223 |
.hidden {
|
| 224 |
display: none;
|
| 225 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
"""
|
| 227 |
|
| 228 |
-
# Add JavaScript to make the thinking buttons work
|
| 229 |
js = """
|
| 230 |
function setupThinkingToggle() {
|
| 231 |
document.querySelectorAll('.thinking-toggle').forEach(button => {
|
| 232 |
-
if (!button.
|
| 233 |
button.addEventListener('click', function() {
|
| 234 |
const content = this.nextElementSibling;
|
| 235 |
content.classList.toggle('hidden');
|
| 236 |
const arrow = this.querySelector('.dropdown-arrow');
|
| 237 |
-
|
| 238 |
-
arrow.textContent = '▼';
|
| 239 |
-
arrow.style.transform = '';
|
| 240 |
-
} else {
|
| 241 |
-
arrow.textContent = '▲';
|
| 242 |
-
arrow.style.transform = 'rotate(0deg)';
|
| 243 |
-
}
|
| 244 |
});
|
| 245 |
-
button.
|
| 246 |
}
|
| 247 |
});
|
| 248 |
}
|
| 249 |
|
| 250 |
-
// Setup a mutation observer to watch for changes in the DOM
|
| 251 |
-
const observer = new MutationObserver(function(mutations) {
|
| 252 |
-
setupThinkingToggle();
|
| 253 |
-
});
|
| 254 |
-
|
| 255 |
-
// Start observing after DOM is loaded
|
| 256 |
document.addEventListener('DOMContentLoaded', () => {
|
| 257 |
setupThinkingToggle();
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
observer.observe(document.body, {
|
| 268 |
-
childList: true,
|
| 269 |
-
subtree: true
|
| 270 |
-
});
|
| 271 |
-
}
|
| 272 |
-
}, 1000);
|
| 273 |
});
|
| 274 |
"""
|
| 275 |
|
|
@@ -281,6 +310,12 @@ with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
|
| 281 |
# State to keep track of the conversation for the model
|
| 282 |
conversation_state = gr.State([])
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
# Chatbot component
|
| 285 |
chatbot = gr.Chatbot(
|
| 286 |
height=500,
|
|
@@ -327,28 +362,22 @@ with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
|
| 327 |
info="Higher values = more creative responses"
|
| 328 |
)
|
| 329 |
|
| 330 |
-
#
|
| 331 |
-
|
| 332 |
-
return [], []
|
| 333 |
-
|
| 334 |
-
# Connect the interface components with explicit handlers
|
| 335 |
-
submit_click = user_input.submit(
|
| 336 |
fn=chat_submit,
|
| 337 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
| 338 |
-
outputs=[user_input, chatbot, conversation_state]
|
| 339 |
)
|
| 340 |
|
| 341 |
-
# Connect send button explicitly
|
| 342 |
send_click = send_btn.click(
|
| 343 |
fn=chat_submit,
|
| 344 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
| 345 |
-
outputs=[user_input, chatbot, conversation_state]
|
| 346 |
)
|
| 347 |
|
| 348 |
-
# Clear conversation
|
| 349 |
clear_btn.click(
|
| 350 |
fn=clear_conversation,
|
| 351 |
-
outputs=[chatbot, conversation_state]
|
| 352 |
)
|
| 353 |
|
| 354 |
# Examples
|
|
@@ -369,6 +398,5 @@ with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
|
|
| 369 |
""")
|
| 370 |
|
| 371 |
if __name__ == "__main__":
|
| 372 |
-
# Enable queue and debugging
|
| 373 |
demo.queue()
|
| 374 |
demo.launch(debug=True)
|
|
|
|
| 4 |
import time
|
| 5 |
import spaces
|
| 6 |
import re
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
# Model configurations
|
| 14 |
MODELS = {
|
|
|
|
| 26 |
# Models that need the enable_thinking parameter
|
| 27 |
THINKING_ENABLED_MODELS = ["Spestly/Athena-R3X-4B"]
|
| 28 |
|
| 29 |
+
# Cache for loaded models
|
| 30 |
+
loaded_models = {}
|
| 31 |
+
|
| 32 |
+
@spaces.GPU
|
| 33 |
+
def load_model(model_id):
|
| 34 |
+
"""Load model and tokenizer once and cache them"""
|
| 35 |
+
try:
|
| 36 |
+
if model_id not in loaded_models:
|
| 37 |
+
logger.info(f"🚀 Loading {model_id}...")
|
| 38 |
+
start_time = time.time()
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 41 |
+
if tokenizer.pad_token is None:
|
| 42 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 43 |
+
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
model_id,
|
| 46 |
+
torch_dtype=torch.float16,
|
| 47 |
+
device_map="auto",
|
| 48 |
+
trust_remote_code=True
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
load_time = time.time() - start_time
|
| 52 |
+
logger.info(f"✅ Model loaded in {load_time:.2f}s")
|
| 53 |
+
loaded_models[model_id] = (model, tokenizer, load_time)
|
| 54 |
+
|
| 55 |
+
return loaded_models[model_id]
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.error(f"Error loading model {model_id}: {str(e)}")
|
| 58 |
+
raise gr.Error(f"Failed to load model {model_id}. Please try another model.")
|
| 59 |
+
|
| 60 |
@spaces.GPU
|
| 61 |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
|
| 62 |
+
"""Generate response using the specified model"""
|
| 63 |
+
try:
|
| 64 |
+
model, tokenizer, _ = load_model(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
# Build messages in proper chat format
|
| 67 |
+
messages = []
|
| 68 |
+
system_prompt = (
|
| 69 |
+
"You are Athena, a helpful, harmless, and honest AI assistant. "
|
| 70 |
+
"You provide clear, accurate, and concise responses to user questions. "
|
| 71 |
+
"You are knowledgeable across many domains and always aim to be respectful and helpful. "
|
| 72 |
+
"You are finetuned by Aayan Mishra"
|
| 73 |
+
)
|
| 74 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 75 |
|
| 76 |
+
# Add conversation history
|
| 77 |
+
for msg in conversation:
|
| 78 |
+
messages.append(msg)
|
| 79 |
|
| 80 |
+
# Add current user message
|
| 81 |
+
messages.append({"role": "user", "content": user_message})
|
| 82 |
|
| 83 |
+
# Check if this model needs the enable_thinking parameter
|
| 84 |
+
if model_id in THINKING_ENABLED_MODELS:
|
| 85 |
+
prompt = tokenizer.apply_chat_template(
|
| 86 |
+
messages,
|
| 87 |
+
tokenize=False,
|
| 88 |
+
add_generation_prompt=True,
|
| 89 |
+
enable_thinking=True
|
| 90 |
+
)
|
| 91 |
+
else:
|
| 92 |
+
prompt = tokenizer.apply_chat_template(
|
| 93 |
+
messages,
|
| 94 |
+
tokenize=False,
|
| 95 |
+
add_generation_prompt=True
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 99 |
+
device = next(model.parameters()).device
|
| 100 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 101 |
+
|
| 102 |
+
generation_start = time.time()
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
outputs = model.generate(
|
| 105 |
+
**inputs,
|
| 106 |
+
max_new_tokens=max_length,
|
| 107 |
+
temperature=temperature,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
top_p=0.9,
|
| 110 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 111 |
+
eos_token_id=tokenizer.eos_token_id
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
generation_time = time.time() - generation_start
|
| 115 |
+
response = tokenizer.decode(
|
| 116 |
+
outputs[0][inputs['input_ids'].shape[-1]:],
|
| 117 |
+
skip_special_tokens=True
|
| 118 |
+
).strip()
|
| 119 |
+
|
| 120 |
+
logger.info(f"Generation time: {generation_time:.2f}s")
|
| 121 |
+
return response, generation_time
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error in generate_response: {str(e)}")
|
| 125 |
+
raise gr.Error(f"Error generating response: {str(e)}")
|
| 126 |
|
| 127 |
def format_response_with_thinking(response):
|
| 128 |
"""Format response to handle <think></think> tags"""
|
|
|
|
| 129 |
if '<think>' in response and '</think>' in response:
|
|
|
|
| 130 |
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
|
| 131 |
match = re.search(pattern, response, re.DOTALL)
|
| 132 |
|
|
|
|
| 135 |
thinking_content = match.group(3).strip()
|
| 136 |
after_thinking = match.group(4).strip()
|
| 137 |
|
|
|
|
| 138 |
html = f"{before_thinking}\n"
|
| 139 |
html += f'<div class="thinking-container">'
|
| 140 |
html += f'<button class="thinking-toggle"><div class="thinking-icon"></div> Thinking completed <span class="dropdown-arrow">▼</span></button>'
|
|
|
|
| 144 |
|
| 145 |
return html
|
| 146 |
|
|
|
|
| 147 |
return response
|
| 148 |
|
| 149 |
+
def validate_input(message):
|
| 150 |
+
"""Validate user input"""
|
| 151 |
+
if not message or not message.strip():
|
| 152 |
+
raise gr.Error("Message cannot be empty")
|
| 153 |
+
if len(message) > 2000:
|
| 154 |
+
raise gr.Error("Message too long (max 2000 characters)")
|
| 155 |
+
return message
|
| 156 |
+
|
| 157 |
def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
|
| 158 |
"""Process a new message and update the chat history"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
try:
|
| 160 |
+
# Validate input
|
| 161 |
+
message = validate_input(message)
|
| 162 |
+
|
| 163 |
+
# Get model ID
|
| 164 |
+
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
|
| 165 |
+
|
| 166 |
+
# Show generating message
|
| 167 |
+
yield "", history + [(message, "Generating response...")], conversation_state, gr.update(visible=True)
|
| 168 |
+
|
| 169 |
+
# Generate response
|
| 170 |
+
response, generation_time = generate_response(
|
| 171 |
model_id, conversation_state, message, max_length, temperature
|
| 172 |
)
|
| 173 |
|
| 174 |
+
# Update conversation state
|
| 175 |
conversation_state.append({"role": "user", "content": message})
|
| 176 |
conversation_state.append({"role": "assistant", "content": response})
|
| 177 |
|
| 178 |
+
# Limit conversation history to last 10 exchanges
|
| 179 |
+
if len(conversation_state) > 20: # 10 user + 10 assistant messages
|
| 180 |
+
conversation_state = conversation_state[-20:]
|
| 181 |
+
|
| 182 |
# Format the response for display
|
| 183 |
formatted_response = format_response_with_thinking(response)
|
| 184 |
|
| 185 |
# Update the visible chat history
|
| 186 |
+
updated_history = history[:-1] + [(message, formatted_response)]
|
| 187 |
+
|
| 188 |
+
yield "", updated_history, conversation_state, gr.update(visible=False)
|
| 189 |
|
|
|
|
| 190 |
except Exception as e:
|
| 191 |
+
logger.error(f"Error in chat_submit: {str(e)}")
|
|
|
|
|
|
|
| 192 |
error_message = f"Error: {str(e)}"
|
| 193 |
+
yield error_message, history, conversation_state, gr.update(visible=False)
|
| 194 |
+
|
| 195 |
+
def clear_conversation():
|
| 196 |
+
"""Clear the conversation history"""
|
| 197 |
+
return [], [], gr.update(visible=False)
|
| 198 |
|
| 199 |
css = """
|
| 200 |
.message {
|
|
|
|
| 266 |
.hidden {
|
| 267 |
display: none;
|
| 268 |
}
|
| 269 |
+
.progress-container {
|
| 270 |
+
text-align: center;
|
| 271 |
+
margin: 10px 0;
|
| 272 |
+
color: #6366f1;
|
| 273 |
+
}
|
| 274 |
"""
|
| 275 |
|
|
|
|
| 276 |
js = """
|
| 277 |
function setupThinkingToggle() {
|
| 278 |
document.querySelectorAll('.thinking-toggle').forEach(button => {
|
| 279 |
+
if (!button.dataset.listenerAdded) {
|
| 280 |
button.addEventListener('click', function() {
|
| 281 |
const content = this.nextElementSibling;
|
| 282 |
content.classList.toggle('hidden');
|
| 283 |
const arrow = this.querySelector('.dropdown-arrow');
|
| 284 |
+
arrow.textContent = content.classList.contains('hidden') ? '▼' : '▲';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
});
|
| 286 |
+
button.dataset.listenerAdded = 'true';
|
| 287 |
}
|
| 288 |
});
|
| 289 |
}
|
| 290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
document.addEventListener('DOMContentLoaded', () => {
|
| 292 |
setupThinkingToggle();
|
| 293 |
+
|
| 294 |
+
const observer = new MutationObserver((mutations) => {
|
| 295 |
+
setupThinkingToggle();
|
| 296 |
+
});
|
| 297 |
+
|
| 298 |
+
observer.observe(document.body, {
|
| 299 |
+
childList: true,
|
| 300 |
+
subtree: true
|
| 301 |
+
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
});
|
| 303 |
"""
|
| 304 |
|
|
|
|
| 310 |
# State to keep track of the conversation for the model
|
| 311 |
conversation_state = gr.State([])
|
| 312 |
|
| 313 |
+
# Hidden progress indicator
|
| 314 |
+
progress = gr.HTML(
|
| 315 |
+
"""<div class="progress-container">Generating response...</div>""",
|
| 316 |
+
visible=False
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
# Chatbot component
|
| 320 |
chatbot = gr.Chatbot(
|
| 321 |
height=500,
|
|
|
|
| 362 |
info="Higher values = more creative responses"
|
| 363 |
)
|
| 364 |
|
| 365 |
+
# Connect the interface components
|
| 366 |
+
submit_event = user_input.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
fn=chat_submit,
|
| 368 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
| 369 |
+
outputs=[user_input, chatbot, conversation_state, progress]
|
| 370 |
)
|
| 371 |
|
|
|
|
| 372 |
send_click = send_btn.click(
|
| 373 |
fn=chat_submit,
|
| 374 |
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
|
| 375 |
+
outputs=[user_input, chatbot, conversation_state, progress]
|
| 376 |
)
|
| 377 |
|
|
|
|
| 378 |
clear_btn.click(
|
| 379 |
fn=clear_conversation,
|
| 380 |
+
outputs=[chatbot, conversation_state, progress]
|
| 381 |
)
|
| 382 |
|
| 383 |
# Examples
|
|
|
|
| 398 |
""")
|
| 399 |
|
| 400 |
if __name__ == "__main__":
|
|
|
|
| 401 |
demo.queue()
|
| 402 |
demo.launch(debug=True)
|