Spaces:
Build error
Build error
| import os | |
| import PyPDF2 | |
| from PyPDF2 import PdfReader | |
| import pandas as pd | |
| ## Embedding model! | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") | |
| folder_path = "./" | |
| context_data = [] | |
| # List all files in the folder | |
| files = os.listdir(folder_path) | |
| # Get list of CSV and Excel files | |
| data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))] | |
| # Process each file | |
| for f, file in enumerate(data_files, 1): | |
| print(f"\nProcessing file {f}: {file}") | |
| file_path = os.path.join(folder_path, file) | |
| try: | |
| # Read the file based on its extension | |
| if file.endswith('.csv'): | |
| df = pd.read_csv(file_path) | |
| else: | |
| df = pd.read_excel(file_path) | |
| # Extract non-empty values from column 2 and append them | |
| context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist()) | |
| except Exception as e: | |
| print(f"Error processing file {file}: {str(e)}") | |
| import os | |
| import PyPDF2 | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.schema import Document | |
| def extract_text_from_pdf(pdf_path): | |
| """Extract text from a PDF file.""" | |
| try: | |
| with open(pdf_path, "rb") as file: | |
| reader = PyPDF2.PdfReader(file) | |
| return "".join(page.extract_text() or "" for page in reader.pages) | |
| except Exception as e: | |
| print(f"Error with {pdf_path}: {e}") | |
| return "" | |
| pdf_files = [f for f in files if f.lower().endswith(".pdf")] | |
| # Process PDFs | |
| documents = [] | |
| for file in pdf_files: | |
| print(f"Processing: {file}") | |
| pdf_path = os.path.join(folder_path, file) | |
| text = extract_text_from_pdf(pdf_path) | |
| if text: | |
| documents.append(Document(page_content=text, metadata={"source": file})) | |
| # Split into chunks | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| separators=['\n\n', '\n', '.', ','], | |
| chunk_size=500, | |
| chunk_overlap=50 | |
| ) | |
| chunks = text_splitter.split_documents(documents) | |
| text_only_chunks = [chunk.page_content for chunk in chunks] | |
| from urllib.parse import urljoin, urlparse | |
| import requests | |
| from io import BytesIO | |
| from bs4 import BeautifulSoup | |
| from langchain_core.prompts import ChatPromptTemplate | |
| import gradio as gr | |
| def scrape_websites(base_urls): | |
| try: | |
| visited_links = set() # To avoid revisiting the same link | |
| content_by_url = {} # Store content from each URL | |
| for base_url in base_urls: | |
| if not base_url.strip(): | |
| continue # Skip empty or invalid URLs | |
| print(f"Scraping base URL: {base_url}") | |
| html_content = fetch_page_content(base_url) | |
| if html_content: | |
| cleaned_content = clean_body_content(html_content) | |
| content_by_url[base_url] = cleaned_content | |
| visited_links.add(base_url) | |
| # Extract and process all internal links | |
| soup = BeautifulSoup(html_content, "html.parser") | |
| links = extract_internal_links(base_url, soup) | |
| for link in links: | |
| if link not in visited_links: | |
| print(f"Scraping link: {link}") | |
| page_content = fetch_page_content(link) | |
| if page_content: | |
| cleaned_content = clean_body_content(page_content) | |
| content_by_url[link] = cleaned_content | |
| visited_links.add(link) | |
| # If the link is a PDF file, extract its content | |
| if link.lower().endswith('.pdf'): | |
| print(f"Extracting PDF content from: {link}") | |
| pdf_content = extract_pdf_text(link) | |
| if pdf_content: | |
| content_by_url[link] = pdf_content | |
| return content_by_url | |
| except Exception as e: | |
| print(f"Error during scraping: {e}") | |
| return {} | |
| def fetch_page_content(url): | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| return response.text | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching {url}: {e}") | |
| return None | |
| def extract_internal_links(base_url, soup): | |
| links = set() | |
| for anchor in soup.find_all("a", href=True): | |
| href = anchor["href"] | |
| full_url = urljoin(base_url, href) | |
| if is_internal_link(base_url, full_url): | |
| links.add(full_url) | |
| return links | |
| def is_internal_link(base_url, link_url): | |
| base_netloc = urlparse(base_url).netloc | |
| link_netloc = urlparse(link_url).netloc | |
| return base_netloc == link_netloc | |
| def extract_pdf_text(pdf_url): | |
| try: | |
| response = requests.get(pdf_url) | |
| response.raise_for_status() | |
| # Open the PDF from the response content | |
| with BytesIO(response.content) as file: | |
| reader = PdfReader(file) | |
| pdf_text = "" | |
| for page in reader.pages: | |
| pdf_text += page.extract_text() | |
| return pdf_text if pdf_text else None | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching PDF {pdf_url}: {e}") | |
| return None | |
| except Exception as e: | |
| print(f"Error reading PDF {pdf_url}: {e}") | |
| return None | |
| def clean_body_content(html_content): | |
| soup = BeautifulSoup(html_content, "html.parser") | |
| # Remove scripts and styles | |
| for script_or_style in soup(["script", "style"]): | |
| script_or_style.extract() | |
| # Get text and clean up | |
| cleaned_content = soup.get_text(separator="\n") | |
| cleaned_content = "\n".join( | |
| line.strip() for line in cleaned_content.splitlines() if line.strip() | |
| ) | |
| return cleaned_content | |
| # if __name__ == "__main__": | |
| # website = [ | |
| # #"https://www.rib.gov.rw/index.php?id=371", | |
| # "https://haguruka.org.rw/our-work/" | |
| # ] | |
| # all_content = scrape_websites(website) | |
| # # Temporary list to store (url, content) tuples | |
| # temp_list = [] | |
| # # Process and store each URL with its content | |
| # for url, content in all_content.items(): | |
| # temp_list.append((url, content)) | |
| # processed_texts = [] | |
| # # Process each element in the temporary list | |
| # for element in temp_list: | |
| # if isinstance(element, tuple): | |
| # url, content = element # Unpack the tuple | |
| # processed_texts.append(f"url: {url}, content: {content}") | |
| # elif isinstance(element, str): | |
| # processed_texts.append(element) | |
| # else: | |
| # processed_texts.append(str(element)) | |
| # def chunk_string(s, chunk_size=2000): | |
| # return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)] | |
| # # List to store the chunks | |
| # chunked_texts = [] | |
| # for text in processed_texts: | |
| # chunked_texts.extend(chunk_string(text)) | |
| data = [] | |
| data.extend(context_data) | |
| #data.extend([item for item in text_only_chunks if item not in data]) | |
| #data.extend([item for item in chunked_texts if item not in data]) | |
| #from langchain_community.vectorstores import Chroma | |
| from langchain_chroma import Chroma | |
| vectorstore = Chroma( | |
| collection_name="GBV_data_set", | |
| embedding_function=embed_model, | |
| ) | |
| vectorstore.get().keys() | |
| # add data to vector nstore | |
| vectorstore.add_texts(data) | |
| api= os.environ.get('V1') | |
| from openai import OpenAI | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_core.runnables import RunnablePassthrough | |
| import gradio as gr | |
| from typing import Iterator | |
| import time | |
| #template for GBV support chatbot | |
| template = (""" | |
| You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries. | |
| You are a conversational AI. Respond directly and naturally to the user's input without displaying any system messages, backend processes, or 'thinking...' responses. Only provide the final response in a human-like and engaging manner. | |
| When responding follow these guidelines: | |
| 1. **Emotional Intelligence** | |
| - Validate feelings without judgment (e.g., "It is completely understandable to feel this way") | |
| - Offer reassurance when appropriate, always centered on empowerment | |
| - Adjust your tone based on the emotional state conveyed | |
| 2. **Personalized Communication** | |
| - Avoid contractions (e.g., use I am instead of I'm) | |
| - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics | |
| - Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions | |
| - Balance warmth with professionalism | |
| 3. **Conversation Management** | |
| - Refer to {conversation_history} to maintain continuity and avoid repetition | |
| - Keep responses concise unless greater detail is explicitly requested | |
| - Use clear paragraph breaks for readability | |
| - Prioritize immediate concerns before addressing secondary issues | |
| 4. **Information Delivery** | |
| - Extract only relevant information from {context} that directly addresses the question | |
| - Present information in accessible, non-technical language | |
| - Organize resource recommendations in order of relevance and accessibility | |
| - Provide links [URL] only when specifically requested, prefaced with clear descriptions | |
| - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?" | |
| 5. **Safety and Ethics** | |
| - Prioritize user safety in all responses | |
| - Never generate speculative content about their specific situation | |
| - Avoid phrases that could minimize experiences or create pressure | |
| - Include gentle reminders about professional help when discussing serious issues | |
| Your response should balance emotional support with practical guidance. | |
| **Context:** {context} | |
| **User's Question:** {question} | |
| **Your Response:** | |
| """) | |
| rag_prompt = PromptTemplate.from_template(template) | |
| retriever = vectorstore.as_retriever() | |
| import requests | |
| API_TOKEN = os.environ.get('Token') | |
| model_name = "facebook/nllb-200-distilled-600M" | |
| url = f"https://api-inference.huggingface.co/models/{model_name}" | |
| headers = { | |
| "Authorization": f"Bearer {API_TOKEN}" | |
| } | |
| def translate_text(text, src_lang, tgt_lang): | |
| """Translate text using Hugging Face API""" | |
| response = requests.post( | |
| url, | |
| headers=headers, | |
| json={ | |
| "inputs": text, | |
| "parameters": { | |
| "src_lang": src_lang, | |
| "tgt_lang": tgt_lang | |
| } | |
| } | |
| ) | |
| if response.status_code == 200: | |
| result = response.json() | |
| if isinstance(result, list) and len(result) > 0: | |
| return result[0]['translation_text'] | |
| return result['translation_text'] | |
| else: | |
| print(f"Translation error: {response.status_code}, {response.text}") | |
| return text # Return original text if translation fails | |
| class OpenRouterLLM: | |
| def __init__(self, key: str): | |
| try: | |
| self.client = OpenAI( | |
| base_url="https://openrouter.ai/api/v1", | |
| api_key=key | |
| ) | |
| self.headers = { | |
| "HTTP-Referer": "http://localhost:3000", | |
| "X-Title": "Local Development" | |
| } | |
| except Exception as e: | |
| print(f"Initialization error: {e}") | |
| raise | |
| def stream(self, prompt: str) -> Iterator[str]: | |
| try: | |
| completion = self.client.chat.completions.create( | |
| #model="deepseek/deepseek-r1-distill-llama-70b:free", | |
| model="meta-llama/llama-3.3-70b-instruct:free", | |
| #model="google/gemini-2.5-pro-exp-03-25:free", | |
| messages=[{"role": "user", "content": prompt}], | |
| stream=True | |
| ) | |
| for chunk in completion: | |
| delta = chunk.choices[0].delta | |
| if hasattr(delta, "content") and delta.content: | |
| yield delta.content | |
| except Exception as e: | |
| yield f"Streaming error: {str(e)}" | |
| class UserSession: | |
| def __init__(self, llm: OpenRouterLLM): # Accept an instance of OpenRouterLLM | |
| self.current_user = None | |
| self.welcome_message = None | |
| self.conversation_history = [] # Add conversation history storage | |
| self.llm = llm # Store the LLM instance | |
| def set_user(self, user_info): | |
| self.current_user = user_info | |
| self.set_welcome_message(user_info.get("Nickname", "Guest")) | |
| # Initialize conversation history with welcome message | |
| welcome = self.get_welcome_message() | |
| self.conversation_history = [ | |
| {"role": "assistant", "content": welcome}, | |
| ] | |
| def get_user(self): | |
| return self.current_user | |
| def set_welcome_message(self, Nickname, src_lang="eng_Latn", tgt_lang="kin_Latn"): | |
| """Set a dynamic welcome message using the OpenRouterLLM.""" | |
| prompt = ( | |
| f"Create a very brief welcome message for {Nickname}. " | |
| f"The message should: " | |
| f"1. Welcome {Nickname} warmly and professionally. " | |
| f"2. Emphasize that this is a safe and trusted space. " | |
| f"3. Highlight specialized support for gender-based violence (GBV) and legal assistance. " | |
| f"4. Use a tone that is warm, reassuring, and professional. " | |
| f"5. Keep the message concise and impactful." | |
| ) | |
| # Use the OpenRouterLLM to generate the message | |
| welcome = "".join(self.llm.stream(prompt)) # Stream and concatenate the response | |
| welcome_text=translate_text(welcome, src_lang, tgt_lang) | |
| # Format the message with HTML styling | |
| self.welcome_message = ( | |
| f"<div style='font-size: 20px;'>" | |
| f"{welcome_text}" | |
| f"</div>" | |
| ) | |
| def get_welcome_message(self): | |
| return self.welcome_message | |
| def add_to_history(self, role, message): | |
| """Add a message to the conversation history""" | |
| self.conversation_history.append({"role": role, "content": message}) | |
| def get_conversation_history(self): | |
| """Get the full conversation history""" | |
| return self.conversation_history | |
| def get_formatted_history(self): | |
| """Get conversation history formatted as a string for the LLM""" | |
| formatted_history = "" | |
| for entry in self.conversation_history: | |
| role = "User" if entry["role"] == "user" else "Assistant" | |
| formatted_history += f"{role}: {entry['content']}\n\n" | |
| return formatted_history | |
| api_key =api | |
| llm_instance = OpenRouterLLM(key=api_key) | |
| #llm_instance = model | |
| user_session = UserSession(llm_instance) | |
| def collect_user_info(Nickname): | |
| if not Nickname: | |
| return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), [] | |
| # Store user info for chat session | |
| user_info = { | |
| "Nickname": Nickname, | |
| "timestamp": time.strftime("%Y-%m-%d %H:%M:%S") | |
| } | |
| # Set user in session | |
| user_session.set_user(user_info) | |
| # Generate welcome message | |
| welcome_message = user_session.get_welcome_message() | |
| # Add initial message to start the conversation | |
| chat_history = add_initial_message([(None, welcome_message)]) | |
| # Return welcome message and update UI | |
| return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history | |
| # Add initial message to start the conversation | |
| def add_initial_message(chatbot): | |
| #initial_message = (" " | |
| # ) | |
| return chatbot #+ [(None, initial_message)] | |
| # Create RAG chain with user context and conversation history | |
| def create_rag_chain(retriever, template, api_key): | |
| llm = OpenRouterLLM(api_key) | |
| rag_prompt = PromptTemplate.from_template(template) | |
| def stream_func(input_dict): | |
| # Get context using the retriever's invoke method | |
| context = retriever.invoke(input_dict["question"]) | |
| context_str = "\n".join([doc.page_content for doc in context]) | |
| # Get user info from the session | |
| user_info = user_session.get_user() or {} | |
| first_name = user_info.get("Nickname", "User") | |
| # Get conversation history | |
| conversation_history = user_session.get_formatted_history() | |
| # Format prompt with user context and conversation history | |
| prompt = rag_prompt.format( | |
| context=context_str, | |
| question=input_dict["question"], | |
| first_name=first_name, | |
| conversation_history=conversation_history | |
| ) | |
| # Stream response | |
| return llm.stream(prompt) | |
| return stream_func | |
| # def rag_memory_stream(message, history): | |
| # # Add user message to history | |
| # user_session.add_to_history("user", message) | |
| # # Initialize with empty response | |
| # partial_text = "" | |
| # full_response = "" | |
| # # Use the rag_chain with the question | |
| # for new_text in rag_chain({"question": message}): | |
| # partial_text += new_text | |
| # full_response = partial_text | |
| # yield partial_text | |
| # # After generating the complete response, add it to history | |
| # user_session.add_to_history("assistant", full_response) | |
| def rag_memory_stream(message, history, user_lang="kin_Latn", system_lang="eng_Latn"): | |
| english_message = translate_text(message, user_lang, system_lang) | |
| user_session.add_to_history("user", english_message) | |
| full_response = "" | |
| for new_text in rag_chain({"question": english_message}): | |
| full_response += new_text | |
| translated_response = translate_text(full_response, system_lang, user_lang) | |
| user_session.add_to_history("assistant", full_response) | |
| yield translated_response | |
| import gradio as gr | |
| api_key = api | |
| def chatbot_interface(): | |
| api_key = api | |
| global template | |
| template = """ | |
| You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries. | |
| **Previous conversation:** {conversation_history} | |
| **Context information:** {context} | |
| **User's Question:** {question} | |
| When responding follow these guidelines: | |
| 1. **Strict Context Adherence** | |
| - Only use information that appears in the provided {context} | |
| - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response | |
| 2. **Personalized Communication** | |
| - Avoid contractions (e.g., use I am instead of I'm) | |
| - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics | |
| - Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions | |
| - Balance warmth with professionalism | |
| 3. **Emotional Intelligence** | |
| - Validate feelings without judgment | |
| - Offer reassurance when appropriate, always centered on empowerment | |
| - Adjust your tone based on the emotional state conveyed | |
| 4. **Conversation Management** | |
| - Refer to {conversation_history} to maintain continuity and avoid repetition | |
| - Use clear paragraph breaks for readability | |
| 5. **Information Delivery** | |
| - Extract only relevant information from {context} that directly addresses the question | |
| - Present information in accessible, non-technical language | |
| - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?" | |
| 6. **Safety and Ethics** | |
| - Do not generate any speculative content or advice not supported by the context | |
| - If the context contains safety information, prioritize sharing that information | |
| Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials. | |
| **Context:** {context} | |
| **User's Question:** {question} | |
| **Your Response:** | |
| """ | |
| global rag_chain | |
| rag_chain = create_rag_chain(retriever, template, api_key) | |
| with gr.Blocks() as demo: | |
| # User registration section | |
| with gr.Column(visible=True, elem_id="registration_container") as registration_container: | |
| gr.Markdown("### Your privacy matters to us! Just share a nickname you feel comfy with to start chatting..") | |
| with gr.Row(): | |
| first_name = gr.Textbox( | |
| label="Nickname", | |
| placeholder="Enter your Nickname You feel comfy", | |
| scale=1, | |
| elem_id="input_nickname" | |
| ) | |
| with gr.Row(): | |
| submit_btn = gr.Button("Start Chatting", variant="primary", scale=2) | |
| response_message = gr.Markdown() | |
| # Chatbot section (initially hidden) | |
| with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container: | |
| chat_interface = gr.ChatInterface( | |
| fn=rag_memory_stream, | |
| title="Chat with GBVR", | |
| fill_height=True | |
| ) | |
| # Footer with version info | |
| gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 © 2025") | |
| # Handle user registration | |
| submit_btn.click( | |
| collect_user_info, | |
| inputs=[first_name], | |
| outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot] | |
| ) | |
| demo.css = """ | |
| :root { | |
| --background: #f0f0f0; | |
| --text: #000000; | |
| } | |
| body, .gradio-container { | |
| margin: 0; | |
| padding: 0; | |
| width: 100vw; | |
| height: 100vh; | |
| display: flex; | |
| flex-direction: column; | |
| justify-content: center; | |
| align-items: center; | |
| background: var(--background); | |
| color: var(--text); | |
| } | |
| .gradio-container { | |
| max-width: 100%; | |
| max-height: 100%; | |
| } | |
| .gr-box { | |
| background: var(--background); | |
| color: var(--text); | |
| border-radius: 12px; | |
| padding: 2rem; | |
| border: 1px solid rgba(0, 0, 0, 0.1); | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05); | |
| } | |
| .gr-button-primary { | |
| background: var(--background); | |
| color: var(--text); | |
| padding: 12px 24px; | |
| border-radius: 8px; | |
| transition: all 0.3s ease; | |
| border: 1px solid rgba(0, 0, 0, 0.1); | |
| } | |
| .gr-button-primary:hover { | |
| transform: translateY(-1px); | |
| box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2); | |
| } | |
| footer { | |
| text-align: center; | |
| color: var(--text); | |
| opacity: 0.7; | |
| padding: 1rem; | |
| font-size: 0.9em; | |
| } | |
| .gr-markdown h3 { | |
| color: var(--text); | |
| margin-bottom: 1rem; | |
| } | |
| .registration-markdown, .chat-title h1 { | |
| color: var(--text); | |
| } | |
| """ | |
| return demo | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| chatbot_interface().launch(share=True) |