Vidhi35 commited on
Commit
92e8329
ยท
verified ยท
1 Parent(s): f1fa421

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +544 -0
README.md CHANGED
@@ -11,4 +11,548 @@ license: mit
11
  short_description: Smart-Pest-Disease-Detection-for-Crops
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
11
  short_description: Smart-Pest-Disease-Detection-for-Crops
12
  ---
13
 
14
+ # ๐ŸŒฑ Plant Disease Detection & Treatment System
15
+
16
+ <div align="center">
17
+
18
+ ![Plant Disease Detection](https://img.shields.io/badge/AI-Plant%20Disease%20Detection-green)
19
+ ![Groq](https://img.shields.io/badge/LLM-Groq%20%2B%20Llama%203.3-orange)
20
+ ![Hugging Face](https://img.shields.io/badge/Model-Hugging%20Face-yellow)
21
+ ![Gradio](https://img.shields.io/badge/Interface-Gradio-blue)
22
+
23
+ **A comprehensive AI-powered plant disease detection and treatment recommendation system**
24
+
25
+ **Group 13 - AgriTech Innovators** ๐ŸŒพ
26
+
27
+ [๐Ÿš€ Live Demo on Hugging Face](https://huggingface.co/spaces/Vidhi35/Smart-Pest-Disease-Detection-for-Crops) | [๐Ÿ“– Documentation](#documentation) | [๐Ÿค Team](#team-members)
28
+
29
+ </div>
30
+
31
+ ---
32
+
33
+ ## ๐Ÿ“‹ Table of Contents
34
+
35
+ - [Overview](#overview)
36
+ - [Features](#features)
37
+ - [Demo](#demo)
38
+ - [Technologies Used](#technologies-used)
39
+ - [System Architecture](#system-architecture)
40
+ - [Installation &amp; Setup](#installation--setup)
41
+ - [Usage Guide](#usage-guide)
42
+ - [Deployment](#deployment)
43
+ - [Team Members](#team-members)
44
+ - [Contributing](#contributing)
45
+ - [License](#license)
46
+
47
+ ---
48
+
49
+ ## ๐ŸŽฏ Overview
50
+
51
+ The **Plant Disease Detection & Treatment System** is an intelligent application that helps farmers, gardeners, and agricultural professionals identify plant diseases and receive AI-powered treatment recommendations. Built by **Group 13**, this system combines state-of-the-art computer vision and large language models to provide accurate disease detection and comprehensive treatment guidance.
52
+
53
+ ### Key Highlights
54
+
55
+ - ๐Ÿ” **Accurate Detection**: Uses pre-trained MobileNetV2 model for disease classification
56
+ - ๐Ÿค– **AI-Powered Recommendations**: Leverages Groq's Llama 3.3 70B for detailed treatment advice
57
+ - ๐Ÿ“ฑ **User-Friendly Interface**: Simple web interface built with Gradio
58
+ - ๐ŸŒ **Deployed on Hugging Face**: Accessible anywhere, anytime
59
+ - ๐Ÿ’ฏ **Free to Use**: No API costs - completely free LLM via Groq
60
+
61
+ ---
62
+
63
+ ## โœจ Features
64
+
65
+ ### ๐Ÿ”ฌ Disease Detection
66
+
67
+ - โœ… Upload plant images or capture from webcam
68
+ - โœ… AI-powered disease classification with confidence scores
69
+ - โœ… Top 3 disease predictions for comprehensive analysis
70
+ - โœ… Support for multiple plant species and diseases
71
+
72
+ ### ๐Ÿ’Š Treatment Recommendations
73
+
74
+ - โœ… **Disease Overview**: Detailed description of the detected disease
75
+ - โœ… **Symptoms**: Key symptoms to identify the disease
76
+ - โœ… **Causes**: Root causes and contributing factors
77
+ - โœ… **Treatment Options**:
78
+ - โšก Immediate actions to take
79
+ - ๐ŸŒฑ Organic/natural remedies
80
+ - ๐Ÿงช Chemical treatments (when necessary)
81
+ - ๐Ÿ›ก๏ธ Preventive measures
82
+ - โœ… **Recovery Timeline**: Expected recovery duration
83
+ - โœ… **Additional Tips**: Expert advice for disease management
84
+
85
+ ### ๐ŸŽจ Enhanced UI/UX
86
+
87
+ - โœ… Beautiful Markdown-formatted output
88
+ - โœ… Custom CSS styling for better readability
89
+ - โœ… Emoji-enhanced sections for visual appeal
90
+ - โœ… Responsive design for all devices
91
+
92
+ ---
93
+
94
+ ## ๐ŸŽฌ Demo
95
+
96
+ ### Live Application
97
+
98
+ Access the deployed application: **[Plant Disease Detection on Hugging Face](https://huggingface.co/spaces/Vidhi35/Smart-Pest-Disease-Detection-for-Crops)**
99
+
100
+ ### How It Works
101
+
102
+ 1. **Upload/Capture Image** ๐Ÿ“ธ
103
+
104
+ - Upload a plant image from your device
105
+ - Or use your webcam to capture a live image
106
+ 2. **AI Analysis** ๐Ÿ”
107
+
108
+ - The system analyzes the image using a pre-trained model
109
+ - Provides top 3 disease predictions with confidence scores
110
+ 3. **Get Treatment** ๐Ÿ’Š
111
+
112
+ - Receive comprehensive AI-generated treatment recommendations
113
+ - Formatted with clear sections and actionable advice
114
+
115
+ ---
116
+
117
+ ## ๐Ÿ› ๏ธ Technologies Used
118
+
119
+ ### Machine Learning & AI
120
+
121
+ | Technology | Purpose | Version |
122
+ | ----------------------------------- | ----------------------------------- | ------- |
123
+ | **Hugging Face Transformers** | Disease classification model | 4.35+ |
124
+ | **Groq** | Free LLM API provider | Latest |
125
+ | **Llama 3.3 70B** | Treatment recommendation generation | Latest |
126
+ | **LangChain** | LLM orchestration and chaining | 1.0+ |
127
+ | **PyTorch** | Deep learning framework | 2.0+ |
128
+
129
+ ### Web Interface
130
+
131
+ | Technology | Purpose | Version |
132
+ | ----------------------- | ------------------------------- | ------- |
133
+ | **Gradio** | Web UI framework | 4.0+ |
134
+ | **Pillow** | Image processing | 10.0+ |
135
+ | **Python-dotenv** | Environment variable management | 1.0+ |
136
+
137
+ ### Model Details
138
+
139
+ - **Classification Model**: `linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification`
140
+ - Architecture: MobileNetV2
141
+ - Input Size: 224x224
142
+ - Pre-trained on plant disease dataset
143
+ - Supports 38+ disease classes
144
+
145
+ ---
146
+
147
+ ## ๐Ÿ—๏ธ System Architecture
148
+
149
+ ```
150
+ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€๏ฟฝ๏ฟฝ๏ฟฝโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
151
+ โ”‚ User Interface โ”‚
152
+ โ”‚ (Gradio) โ”‚
153
+ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
154
+ โ”‚
155
+ โ–ผ
156
+ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
157
+ โ”‚ Image Input โ”‚
158
+ โ”‚ (Upload / Webcam Capture) โ”‚
159
+ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
160
+ โ”‚
161
+ โ–ผ
162
+ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
163
+ โ”‚ Disease Classification โ”‚
164
+ โ”‚ (Hugging Face MobileNetV2) โ”‚
165
+ โ”‚ - Top 3 Predictions โ”‚
166
+ โ”‚ - Confidence Scores โ”‚
167
+ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
168
+ โ”‚
169
+ โ–ผ
170
+ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
171
+ โ”‚ Treatment Generation โ”‚
172
+ โ”‚ (Groq + Llama 3.3 70B) โ”‚
173
+ โ”‚ via LangChain โ”‚
174
+ โ”‚ - Disease Overview โ”‚
175
+ โ”‚ - Symptoms & Causes โ”‚
176
+ โ”‚ - Treatment Recommendations โ”‚
177
+ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
178
+ โ”‚
179
+ โ–ผ
180
+ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
181
+ โ”‚ Formatted Output โ”‚
182
+ โ”‚ (Markdown with CSS Styling) โ”‚
183
+ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
184
+ ```
185
+
186
+ ---
187
+
188
+ ## ๐Ÿ“ฆ Installation & Setup
189
+
190
+ ### Prerequisites
191
+
192
+ - Python 3.8 or higher
193
+ - pip (Python package manager)
194
+ - Internet connection (for first-time model download)
195
+
196
+ ### Step 1: Clone the Repository
197
+
198
+ ```bash
199
+ git clone https://github.com/Vidhi35/Smart-Pest-Disease-Detection-for-Crops.git
200
+ cd Smart-Pest-Disease-Detection-for-Crops
201
+ ```
202
+
203
+ ### Step 2: Create Virtual Environment (Recommended)
204
+
205
+ **Windows:**
206
+
207
+ ```bash
208
+ python -m venv venv
209
+ venv\Scripts\activate
210
+ ```
211
+
212
+ **Linux/Mac:**
213
+
214
+ ```bash
215
+ python3 -m venv venv
216
+ source venv/bin/activate
217
+ ```
218
+
219
+ ### Step 3: Install Dependencies
220
+
221
+ ```bash
222
+ pip install -r requirements.txt
223
+ ```
224
+
225
+ **Dependencies include:**
226
+
227
+ - gradio>=4.0.0
228
+ - transformers>=4.35.0
229
+ - torch>=2.0.0
230
+ - torchvision>=0.15.0
231
+ - Pillow>=10.0.0
232
+ - langchain>=1.0.0
233
+ - langchain-core>=1.0.0
234
+ - langchain-groq>=1.0.0
235
+ - python-dotenv>=1.0.0
236
+
237
+ ### Step 4: Get Free Groq API Key
238
+
239
+ 1. Visit [Groq Console](https://console.groq.com)
240
+ 2. Sign up for a free account (no credit card required)
241
+ 3. Navigate to "API Keys" in the sidebar
242
+ 4. Click "Create API Key"
243
+ 5. Copy your API key (starts with `gsk_...`)
244
+
245
+ ### Step 5: Configure Environment Variables
246
+
247
+ Create a `.env` file in the project root:
248
+
249
+ ```bash
250
+ # .env file
251
+ GROQ_API_KEY="gsk_your_actual_api_key_here"
252
+ ```
253
+
254
+ **Alternative: Set environment variable directly**
255
+
256
+ **Windows (PowerShell):**
257
+
258
+ ```powershell
259
+ $env:GROQ_API_KEY="gsk_your_api_key_here"
260
+ ```
261
+
262
+ **Windows (Command Prompt):**
263
+
264
+ ```cmd
265
+ set GROQ_API_KEY=gsk_your_api_key_here
266
+ ```
267
+
268
+ **Linux/Mac:**
269
+
270
+ ```bash
271
+ export GROQ_API_KEY=gsk_your_api_key_here
272
+ ```
273
+
274
+ ### Step 6: Run the Application
275
+
276
+ ```bash
277
+ python app.py
278
+ ```
279
+
280
+ The application will launch at: **http://localhost:7860**
281
+
282
+ ---
283
+
284
+ ## ๐Ÿ“– Usage Guide
285
+
286
+ ### Basic Usage
287
+
288
+ 1. **Launch the Application**
289
+
290
+ ```bash
291
+ python app.py
292
+ ```
293
+ 2. **Access the Web Interface**
294
+
295
+ - Open your browser
296
+ - Navigate to `http://localhost:7860`
297
+ 3. **Upload or Capture Image**
298
+
299
+ - Click on the image upload area
300
+ - Choose "Upload" to select an image from your device
301
+ - Or choose "Webcam" to capture a live image
302
+ 4. **Analyze Disease**
303
+
304
+ - Click the "๐Ÿ”ฌ Analyze Disease" button
305
+ - Wait for the AI to process the image (usually 2-5 seconds)
306
+ 5. **View Results**
307
+
308
+ - **Left Panel**: Disease predictions with confidence scores
309
+ - **Right Panel**: Comprehensive treatment recommendations
310
+
311
+ ### Tips for Best Results
312
+
313
+ โœ… **Image Quality**
314
+
315
+ - Use clear, well-lit images
316
+ - Focus on affected plant areas
317
+ - Avoid blurry or dark images
318
+
319
+ โœ… **Image Content**
320
+
321
+ - Capture leaves, stems, or fruits showing disease symptoms
322
+ - Include close-up shots of affected areas
323
+ - Ensure the disease symptoms are visible
324
+
325
+ โœ… **Multiple Angles**
326
+
327
+ - Try different angles if first result is uncertain
328
+ - Compare predictions from multiple images
329
+
330
+ ---
331
+
332
+ ## ๐Ÿš€ Deployment
333
+
334
+ ### Deployed on Hugging Face Spaces
335
+
336
+ This project is deployed on **Hugging Face Spaces** under **Vidhi's account**.
337
+
338
+ **Live URL**: [https://huggingface.co/spaces/Vidhi35/Smart-Pest-Disease-Detection-for-Crops](https://huggingface.co/spaces/Vidhi35/Smart-Pest-Disease-Detection-for-Crops)
339
+
340
+ ### Deployment Steps (For Reference)
341
+
342
+ 1. **Create Hugging Face Account**
343
+
344
+ - Sign up at [huggingface.co](https://huggingface.co)
345
+ 2. **Create New Space**
346
+
347
+ - Click "New Space"
348
+ - Choose "Gradio" as the SDK
349
+ - Name: `plant-disease-detection`
350
+ 3. **Upload Files**
351
+
352
+ - `app.py` - Main application file
353
+ - `requirements.txt` - Dependencies
354
+ - `.env` - Environment variables (add Groq API key as a Space secret)
355
+ - `README.md` - This documentation
356
+ 4. **Configure Secrets**
357
+
358
+ - Go to Space Settings
359
+ - Add `GROQ_API_KEY` as a secret
360
+ - Paste your Groq API key
361
+ 5. **Deploy**
362
+
363
+ - Space will automatically build and deploy
364
+ - Access via the provided URL
365
+
366
+ ### Alternative Deployment Options
367
+
368
+ #### Deploy on Render
369
+
370
+ ```bash
371
+ # Add Procfile
372
+ web: python app.py
373
+ ```
374
+
375
+ #### Deploy on Railway
376
+
377
+ ```bash
378
+ # Add railway.json
379
+ {
380
+ "build": {
381
+ "builder": "NIXPACKS"
382
+ },
383
+ "deploy": {
384
+ "startCommand": "python app.py"
385
+ }
386
+ }
387
+ ```
388
+
389
+ ---
390
+
391
+ ## ๐Ÿ‘ฅ Team Members
392
+
393
+ **Group 13 - AgriTech Innovators** ๐ŸŒพ
394
+
395
+ Our team of passionate developers and agricultural technology enthusiasts working together to revolutionize plant disease detection.
396
+
397
+ | Name | Roll Number | Role | Contribution |
398
+ | -------------------------- | ------------ | ----------------------------------- | --------------------------------------------------------------------------- |
399
+ | **Roshan Khatri** | 300012723047 | Backend Developer & LLM Integration | Implemented Groq/Llama integration, LangChain setup, and prompt engineering |
400
+ | **Suman Kumar** | 300012723065 | Model Integration Specialist | Disease classification model setup, optimization, and testing |
401
+ | **Vedshree Shrawan** | 300012723070 | UI/UX Designer | Gradio interface design, CSS styling, and user experience enhancement |
402
+ | **Vidhirani Netam** | 300012723071 | Deployment Lead | Hugging Face Spaces deployment, configuration, and maintenance |
403
+ | **Yash Shukla** | 300012723073 | Documentation & Testing | Comprehensive documentation, testing, debugging, and quality assurance |
404
+
405
+ ### ๐ŸŽฏ Team Contributions
406
+
407
+ Our collaborative efforts resulted in a comprehensive plant disease detection system:
408
+
409
+ - **๐Ÿค– AI/ML Development**:
410
+
411
+ - Integrated Hugging Face MobileNetV2 for disease classification
412
+ - Implemented Groq + Llama 3.3 70B for intelligent treatment recommendations
413
+ - Optimized model performance and response time
414
+ - **๐Ÿ’ป Backend Development**:
415
+
416
+ - Migrated from Google Gemini to free Groq LLM
417
+ - Updated to modern LangChain 1.1.0 (LCEL syntax)
418
+ - Implemented robust error handling and validation
419
+ - **๐ŸŽจ Frontend & UI/UX**:
420
+
421
+ - Designed beautiful Gradio interface
422
+ - Created custom CSS styling for Markdown rendering
423
+ - Enhanced user experience with emoji-rich formatted output
424
+ - **๐Ÿ“š Documentation**:
425
+
426
+ - Created 10+ comprehensive documentation files
427
+ - Wrote detailed setup and deployment guides
428
+ - Prepared user manuals and troubleshooting guides
429
+ - **๐Ÿš€ Deployment & DevOps**:
430
+
431
+ - Deployed on Hugging Face Spaces
432
+ - Configured environment variables and secrets
433
+ - Set up continuous integration workflow
434
+ - **๐Ÿงช Testing & Quality Assurance**:
435
+
436
+ - Comprehensive testing of all features
437
+ - Bug fixes and performance optimization
438
+ - User acceptance testing
439
+
440
+ ### ๐Ÿ† Team Achievements
441
+
442
+ - โœ… Successfully built a production-ready AI application
443
+ - โœ… Migrated to 100% FREE LLM solution (zero API costs)
444
+ - โœ… Created professional-grade documentation
445
+ - โœ… Deployed on Hugging Face for public access
446
+ - โœ… Achieved fast response times (2-5 seconds)
447
+ - โœ… Implemented modern best practices and coding standards
448
+
449
+ ---
450
+
451
+ ## ๐Ÿค Contributing
452
+
453
+ We welcome contributions from the community! Here's how you can help:
454
+
455
+ ### Reporting Issues
456
+
457
+ - Use GitHub Issues to report bugs
458
+ - Provide detailed description and steps to reproduce
459
+ - Include screenshots if applicable
460
+
461
+ ### Suggesting Features
462
+
463
+ - Open a GitHub Issue with the "enhancement" label
464
+ - Describe the feature and its benefits
465
+ - Discuss implementation approach
466
+
467
+ ### Pull Requests
468
+
469
+ 1. Fork the repository
470
+ 2. Create a feature branch (`git checkout -b feature/AmazingFeature`)
471
+ 3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
472
+ 4. Push to the branch (`git push origin feature/AmazingFeature`)
473
+ 5. Open a Pull Request
474
+
475
+ ---
476
+
477
+ ## ๐Ÿ“„ License
478
+
479
+ This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.
480
+
481
+ ```
482
+ MIT License
483
+
484
+ Copyright (c) 2024 Group 13
485
+
486
+ Permission is hereby granted, free of charge, to any person obtaining a copy
487
+ of this software and associated documentation files (the "Software"), to deal
488
+ in the Software without restriction, including without limitation the rights
489
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
490
+ copies of the Software, and to permit persons to whom the Software is
491
+ furnished to do so, subject to the following conditions:
492
+
493
+ The above copyright notice and this permission notice shall be included in all
494
+ copies or substantial portions of the Software.
495
+ ```
496
+
497
+ ---
498
+
499
+ ## ๐Ÿ™ Acknowledgments
500
+
501
+ - **Hugging Face** for providing the disease classification model
502
+ - **Groq** for free access to Llama 3.3 70B
503
+ - **LangChain** for LLM orchestration framework
504
+ - **Gradio** for the amazing web interface framework
505
+ - **Our Instructors** for guidance and support
506
+
507
+ ---
508
+
509
+ ## ๐Ÿ“ž Contact & Support
510
+
511
+ - **Project Repository**: [GitHub Link]
512
+ - **Live Demo**: [Hugging Face Spaces - Vidhi](https://huggingface.co/spaces/Vidhi35/Smart-Pest-Disease-Detection-for-Crops)
513
+ - **Issues**: [GitHub Issues](https://github.com/your-repo/issues)
514
+ - **Discussions**: [GitHub Discussions](https://github.com/your-repo/discussions)
515
+
516
+ ---
517
+
518
+ ## โš ๏ธ Disclaimer
519
+
520
+ This system provides **suggestions only**. Always consult with agricultural experts, agronomists, or plant pathologists for serious plant health issues. The AI-generated recommendations should be used as a supplementary tool, not as a replacement for professional agricultural advice.
521
+
522
+ ---
523
+
524
+ ## ๐Ÿ“Š Project Statistics
525
+
526
+ - **Lines of Code**: ~380
527
+ - **Dependencies**: 9 main packages
528
+ - **Model Size**: ~14MB (MobileNetV2)
529
+ - **Supported Diseases**: 38+ plant disease classes
530
+ - **Average Response Time**: 2-5 seconds
531
+ - **Deployment Platform**: Hugging Face Spaces
532
+
533
+ ---
534
+
535
+ ## ๐Ÿ”ฎ Future Enhancements
536
+
537
+ - [ ] Add support for more plant species
538
+ - [ ] Implement disease severity assessment
539
+ - [ ] Add multi-language support
540
+ - [ ] Create mobile application
541
+ - [ ] Integrate weather data for better predictions
542
+ - [ ] Add user feedback mechanism
543
+ - [ ] Implement disease tracking over time
544
+ - [ ] Create API endpoints for integration
545
+
546
+ ---
547
+
548
+ <div align="center">
549
+
550
+ **Made with โค๏ธ by Group 13**
551
+
552
+ โญ Star this repository if you found it helpful!
553
+
554
+ </div>
555
+
556
+
557
+
558
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference