File size: 7,863 Bytes
4e0ff2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230210
4e0ff2f
3230210
 
 
 
 
4e0ff2f
 
3230210
 
4e0ff2f
 
 
 
 
 
 
3230210
 
 
 
 
 
 
 
4e0ff2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230210
4e0ff2f
 
 
 
f14b4f0
4e0ff2f
 
 
 
f14b4f0
4e0ff2f
 
 
 
 
 
 
 
1d8b715
 
 
 
 
 
 
 
 
 
4e0ff2f
 
 
 
1d8b715
3230210
4e0ff2f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
from PIL import Image
import numpy as np
import os
import torch
import torchvision.transforms as transforms
from models import get_model

# 常量定义
MEAN = {
    "imagenet": [0.485, 0.456, 0.406],
    "clip": [0.48145466, 0.4578275, 0.40821073]
}

STD = {
    "imagenet": [0.229, 0.224, 0.225],
    "clip": [0.26862954, 0.26130258, 0.27577711]
}



def collect_examples_grouped(base_dir="examples"):
    """
    扫描 base_dir 下的 real/ 和 fake/ 子目录,分别返回两个二维列表:
    
    Returns:
        real_examples: [["examples/real/0001.jpg"], ...]
        fake_examples: [["examples/fake/0001.jpg"], ...]
    """
    exts = (".jpg", ".jpeg", ".png", ".bmp", ".webp")
    real_examples = []
    fake_examples = []

    for cls in ["real", "fake"]:
        subdir = os.path.join(base_dir, cls)
        if not os.path.isdir(subdir):
            continue
        for fname in sorted(os.listdir(subdir)):
            if fname.lower().endswith(exts):
                path = [os.path.join(subdir, fname)]
                if cls == "real":
                    real_examples.append(path)
                else:
                    fake_examples.append(path)

    return real_examples, fake_examples


class ForgeryDetector:
    def __init__(self, arch='CLIP:ViT-L/14', ckpt_path='checkpoints/model_epoch_best.pth', device='cuda'):
        """
        初始化伪造检测器
        
        Args:
            arch: 模型架构 (如 'res50', 'CLIP:ViT-B/32' 等)
            ckpt_path: 预训练模型权重路径
            device: 运行设备 ('cuda' 或 'cpu')
        """
        self.arch = arch
        self.device = torch.device(device if torch.cuda.is_available() else 'cpu')
        
        # 根据架构选择统计信息
        stat_from = "imagenet" if arch.lower().startswith("imagenet") else "clip"
        
        # 数据预处理
        self.transform = transforms.Compose([
            transforms.Resize(256),  # 与验证代码保持一致
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=MEAN[stat_from], std=STD[stat_from]),
        ])
        
        # 创建模型选项对象 (模拟TrainOptions)
        self.opt = self._create_opt(arch)
        
        # 加载模型
        self.model = self._load_model(ckpt_path)
        
    def _create_opt(self, arch):
        """创建模型配置选项"""
        class Options:
            pass
        
        opt = Options()
        opt.arch = arch
        opt.head_type = "attention" if arch.startswith("CLIP:") else "fc"
        opt.shuffle = True 
        opt.shuffle_times = 1
        opt.original_times = 1
        opt.patch_size = [14]
        opt.penultimate_feature = False
        opt.patch_base = False
        
        return opt
        
    def _load_model(self, ckpt_path):
        """加载预训练模型"""
        print(f"正在加载模型架构: {self.arch}")
        model = get_model(self.opt)
        
        # 加载权重
        print(f"正在加载权重: {ckpt_path}")
        state_dict = torch.load(ckpt_path, map_location=self.device)
        
        # 根据模型类型加载不同的权重
        if self.opt.head_type == "fc":
            model.fc.load_state_dict(state_dict)
        elif self.opt.head_type == "attention":
            model.attention_head.load_state_dict(state_dict)
        else:
            model.load_state_dict(state_dict)
            
        model.eval()
        model.to(self.device)
        print("模型加载完成!")
        
        return model
    
    def preprocess_image(self, image:Image.Image):
        """
        预处理单张图片
        
        Args:
            image_path: 图片路径
            
        Returns:
            处理后的tensor
        """

            
        try:
            image_tensor = self.transform(image).unsqueeze(0)  # 添加batch维度
            return image_tensor.to(self.device)
        except Exception as e:
            raise ValueError(f"图片预处理失败: {e}")
    
    def predict(self, image: Image.Image, return_probabilities=True):
        """
        对单张图片进行伪造检测
        
        Args:
            image: Image.Image
            return_probabilities: 是否返回概率值,否则返回类别
            
        Returns:
            如果return_probabilities=True: 返回 (real_prob, fake_prob)
            如果return_probabilities=False: 返回 "real" 或 "fake"
        """
        # 预处理图片
        image_tensor = self.preprocess_image(image)
        
        # 推理
        with torch.no_grad():
            output = self.model(image_tensor)
            # 处理不同的输出格式
            if output.shape[-1] == 2:
                # 二分类输出
                probs = torch.softmax(output, dim=1)[0]
                
                real_prob = probs[0].item()
                fake_prob = probs[1].item()
            else:
                # 单值输出 (通常用sigmoid)
                fake_prob = torch.sigmoid(output).item()
                real_prob = 1 - fake_prob
        
        if return_probabilities:
            return real_prob, fake_prob
        else:
            return "real" if real_prob > fake_prob else "fake"
    
    def batch_predict(self, image_paths, return_probabilities=True):
        """
        批量预测多张图片
        
        Args:
            image_paths: 图片路径列表
            return_probabilities: 是否返回概率值
            
        Returns:
            预测结果列表
        """
        results = []
        for image_path in image_paths:
            try:
                result = self.predict(image_path, return_probabilities)
                results.append({
                    'image_path': image_path,
                    'result': result,
                    'status': 'success'
                })
            except Exception as e:
                results.append({
                    'image_path': image_path,
                    'result': None,
                    'status': f'error: {e}'
                })
        return results


model = ForgeryDetector()

# ------- 1) (示例)假模型 -------
def predict(img: Image.Image):
    result = model.predict(img)

    probs = np.array(result)
    return {"Real Image": float(probs[0]), "Fake Image": float(probs[1])}

real_examples, fake_examples = collect_examples_grouped()   


# ------- 2) UI -------
with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>Face Forgery Detection</h1>")

    with gr.Row():
        # —— 左列:图片 + 按钮 ——
        with gr.Column(scale=1):
            img_input = gr.Image(label="Input", type="pil")

            # ✨ 示例图片组件

            # 把按钮放到 **同一列** 下方
            with gr.Row():
                submit_btn = gr.Button("Submit", variant="primary")
                clear_btn = gr.ClearButton(value="Clear", components=[img_input])

            gr.Markdown("### 🖼 Example Images")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### 🟢 Real Examples")
                    gr.Examples(examples=real_examples, inputs=img_input, cache_examples=False)
                with gr.Column():
                    gr.Markdown("#### 🔴 Fake Examples")
                    gr.Examples(examples=fake_examples, inputs=img_input, cache_examples=False)

        # —— 右列:结果条形图 ——
        with gr.Column(scale=1):
            label_output = gr.Label(label="output", num_top_classes=2)

            

    # 交互
    submit_btn.click(predict, inputs=img_input, outputs=label_output)
    clear_btn.add([label_output])  # 同时清空右侧结果

if __name__ == "__main__":
    demo.launch()