tangtang commited on
Commit
c7ca903
·
1 Parent(s): 23c8313

Update space1

Browse files
Files changed (3) hide show
  1. src/about.py +5 -4
  2. src/display/utils.py +1 -1
  3. src/populate.py +3 -3
src/about.py CHANGED
@@ -10,9 +10,9 @@ class Task:
10
 
11
  class Tasks(Enum):
12
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
13
- Reference_Generation_Precision = Task("Reference_Generation", "Precision","Precision (%)")
14
- Title_search_rate = Task("Reference Generation",
15
- "Title_search_rate", "Title search rate (%)")
16
  # Overlap_rate = Task("Reference Generation",
17
  # "Overlap_rate", "Overlap_rate (%)")
18
  # Similarity = Task("Abstract Writing",
@@ -42,7 +42,8 @@ class Tasks(Enum):
42
  # "ROUGE-2", "ROUGE-2↑")
43
  # ROUGE_L = Task("Review Composition",
44
  # "ROUGE-L", "ROUGE-L↑")
45
-
 
46
  # factual_consistency_rate = Task("factual_consistency_rate", "factual_consistency_rate", "Factual Consistency Rate (%)")
47
  # answer_rate = Task("answer_rate", "answer_rate", "Answer Rate (%)")
48
  # average_summary_length = Task("average_summary_length",
 
10
 
11
  class Tasks(Enum):
12
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
13
+ # Reference_Generation_Precision = Task("Reference_Generation", "Precision","Precision (%)")
14
+ # Title_search_rate = Task("Reference Generation",
15
+ # "Title_search_rate", "Title search rate (%)")
16
  # Overlap_rate = Task("Reference Generation",
17
  # "Overlap_rate", "Overlap_rate (%)")
18
  # Similarity = Task("Abstract Writing",
 
42
  # "ROUGE-2", "ROUGE-2↑")
43
  # ROUGE_L = Task("Review Composition",
44
  # "ROUGE-L", "ROUGE-L↑")
45
+ hallucination_rate = Task("hallucination_rate", "hallucination_rate", "Hallucination Rate (%)")
46
+ # reference_validity_rate = Task("reference_validity_rate", "reference_validity_rate",
47
  # factual_consistency_rate = Task("factual_consistency_rate", "factual_consistency_rate", "Factual Consistency Rate (%)")
48
  # answer_rate = Task("answer_rate", "answer_rate", "Answer Rate (%)")
49
  # average_summary_length = Task("average_summary_length",
src/display/utils.py CHANGED
@@ -26,7 +26,7 @@ auto_eval_column_dict = []
26
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
29
- # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
  # Model information
 
26
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
29
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
  # Model information
src/populate.py CHANGED
@@ -18,11 +18,11 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
18
  # print(df.head(10))
19
 
20
  # 将数组转标量,空数组变为 0
21
- df["Precision (%)"] = df["Precision (%)"].apply(lambda x: x[0] if len(x) > 0 else 0)
22
- df["Title search rate (%)"] = df["Title search rate (%)"].apply(lambda x: x[0] if len(x) > 0 else 0)
23
 
24
  # 平均值列
25
- df["Average ⬆️"] = df[["Precision (%)", "Title search rate (%)"]].mean(axis=1)
26
 
27
  # 排序
28
  df = df.sort_values(by=["Average ⬆️"], ascending=False)
 
18
  # print(df.head(10))
19
 
20
  # 将数组转标量,空数组变为 0
21
+ # df["Precision (%)"] = df["Precision (%)"].apply(lambda x: x[0] if len(x) > 0 else 0)
22
+ # df["Title search rate (%)"] = df["Title search rate (%)"].apply(lambda x: x[0] if len(x) > 0 else 0)
23
 
24
  # 平均值列
25
+ # df["Average ⬆️"] = df[["Precision (%)", "Title search rate (%)"]].mean(axis=1)
26
 
27
  # 排序
28
  df = df.sort_values(by=["Average ⬆️"], ascending=False)