import json import os import pandas as pd import numpy as np from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results CLOSED_MODELS = { "openai/GPT-4o": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"}, "Claude-3.5-Sonnet": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"}, } def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] print(all_data_json) df = pd.DataFrame.from_records(all_data_json) # print(df.head(10)) # for model_name, info in CLOSED_MODELS.items(): # if model_name not in df['Model'].values: # df = pd.concat([df, pd.DataFrame([{ # "Model": model_name, # "params": info["params"], # "license": info["license"], # "likes": info["likes"], # "model_type": info["model_type"], # "Precision (%)": 0, # "Title search rate (%)": 0 # }])], ignore_index=True) def extract_first(value): if isinstance(value, (list, np.ndarray)): return value[0] if len(value) > 0 else 0 elif isinstance(value, (int, float)): return value else: return 0 df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first) # 将数组转标量,空数组变为 0 df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first) df["(T1) Title Search Rate (%)"] = df["(T1) Title Search Rate (%)"].apply(extract_first) df["(T1) Overlap (%)"] = df["(T1) Overlap (%)"].apply(extract_first) df["(T1) Precision (First Author) (%)"] = df["(T1) Precision (First Author) (%)"].apply(extract_first) df["(T1) Overlap (First Author) (%)"] = df["(T1) Overlap (First Author) (%)"].apply(extract_first) # Task 2 df["(T2) Similarity (%)"] = df["(T2) Similarity (%)"].apply(extract_first) df["(T2) Entail (TRUE %)"] = df["(T2) Entail (TRUE %)"].apply(extract_first) df["(T2) Entail (GPT-4o %)"] = df["(T2) Entail (GPT-4o %)"].apply(extract_first) df["(T2) ROUGE-1 (%)"] = df["(T2) ROUGE-1 (%)"].apply(extract_first) df["(T2) ROUGE-2 (%)"] = df["(T2) ROUGE-2 (%)"].apply(extract_first) df["(T2) ROUGE-L (%)"] = df["(T2) ROUGE-L (%)"].apply(extract_first) # Task 3 df["(T3) Precision (%)"] = df["(T3) Precision (%)"].apply(extract_first) df["(T3) Title Search Rate (%)"] = df["(T3) Title Search Rate (%)"].apply(extract_first) df["(T3) Overlap (%)"] = df["(T3) Overlap (%)"].apply(extract_first) df["(T3) KPR (%)"] = df["(T3) KPR (%)"].apply(extract_first) df["(T3) ROUGE-1 (%)"] = df["(T3) ROUGE-1 (%)"].apply(extract_first) df["(T3) ROUGE-2 (%)"] = df["(T3) ROUGE-2 (%)"].apply(extract_first) df["(T3) ROUGE-L (%)"] = df["(T3) ROUGE-L (%)"].apply(extract_first) # 平均值列 df["Average ⬆️"] = df[["(T1) Precision (%)", "(T1) Title Search Rate (%)", "(T1) Overlap (%)", "(T1) Precision (First Author) (%)", "(T1) Overlap (First Author) (%)", "(T2) Similarity (%)", "(T2) Entail (TRUE %)", "(T2) Entail (GPT-4o %)", "(T2) ROUGE-1 (%)", "(T2) ROUGE-2 (%)", "(T2) ROUGE-L (%)", "(T3) Precision (%)", "(T3) Title Search Rate (%)", "(T3) Overlap (%)", "(T3) KPR (%)", "(T3) ROUGE-1 (%)", "(T3) ROUGE-2 (%)", "(T3) ROUGE-L (%)"]].mean(axis=1) # 排序 df = df.sort_values(by=["Average ⬆️"], ascending=False) # 保留需要显示的列 cols = [c for c in cols if c in df.columns] df = df[cols].round(2) # 如果 benchmark_cols 有列不在 df 中,忽略 benchmark_cols = [c for c in benchmark_cols if c in df.columns] df[benchmark_cols] = df[benchmark_cols].fillna(0) # if benchmark_cols: # df = df[has_no_nan_values(df, benchmark_cols)] # print(df.head(10)) return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]