Spaces:
Running
Running
| import torch | |
| from PIL import Image | |
| import os | |
| from matplotlib import pyplot as plt | |
| import argparse | |
| from transformers import CLIPProcessor, CLIPModel | |
| from transformers import AutoProcessor, AutoModel | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def create_gallery(gallery_paths, model, processor): | |
| gallery = [] | |
| for path in gallery_paths: | |
| img = Image.open(os.path.join(args.gallery_path,path)) | |
| img_inputs = processor(images=img, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| if args.model == "clip": | |
| img_embedding = model.get_image_features(**img_inputs) | |
| elif args.model == "dinov2": | |
| with torch.no_grad(): | |
| outputs = model(**img_inputs) | |
| img_embedding = outputs.last_hidden_state.mean(dim=1) | |
| img_embedding /= img_embedding.norm(dim=-1, keepdim=True) | |
| gallery.append([img_embedding, os.path.join(args.gallery_path, path)]) | |
| return gallery | |
| def retrieval(args): | |
| if args.model == "clip": | |
| model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device) | |
| processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| elif args.model == "dinov2": | |
| # Load DINOv2 model | |
| model_name = "facebook/dinov2-base" | |
| model = AutoModel.from_pretrained(model_name) | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| gallery_paths = os.listdir(args.gallery_path) | |
| query_paths = os.listdir(args.query_path) | |
| print("--- Initalizing gallery ---") | |
| gallery = create_gallery(gallery_paths, model, processor) | |
| for k, query_path in enumerate(query_paths): | |
| query_image = Image.open(os.path.join(args.query_path, query_path)) | |
| img_inputs = processor(images=query_image, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| if args.model == "clip": | |
| query_embedding = model.get_image_features(**img_inputs) | |
| elif args.model == "dinov2": | |
| with torch.no_grad(): | |
| outputs = model(**img_inputs) | |
| query_embedding = outputs.last_hidden_state.mean(dim=1) | |
| query_embedding /= query_embedding.norm(dim=-1, keepdim=True) | |
| fig = plt.figure() | |
| plot_length = 11 | |
| rank_list = [] | |
| gallery_ax = fig.add_subplot(1,plot_length,1) #add query image in the left top place in plot | |
| gallery_ax.imshow(query_image) | |
| print(f"--- Starting image retrieval for query image: {query_path}") | |
| logit_scale = 100 | |
| query_normalized = query_embedding / query_embedding.norm(dim=1, keepdim=True) | |
| for item in gallery: | |
| # normalized features | |
| gallery_normalized = item[0] / item[0].norm(dim=1, keepdim=True) | |
| # cosine similarity as logits | |
| similarity_score = (logit_scale * query_normalized @ gallery_normalized.t()).item() | |
| similarity_score = round(similarity_score,3) | |
| rank_list.append([similarity_score, item[1]]) # add gallery image with its similarity score to this query image in ranking list | |
| rank_list = sorted(rank_list, key=lambda x: x[0], reverse = True) | |
| for i in range(2,plot_length): | |
| gallery_ax = fig.add_subplot(1,plot_length,i) | |
| img = Image.open(rank_list[i][1]) | |
| gallery_ax.imshow(img) | |
| gallery_ax.set_title('%.1f'% rank_list[i][0], fontsize=8) #add similarity score as title | |
| gallery_ax.axis('off') | |
| plt.savefig(os.path.join(args.outDir, "plot_"+ str(k)+".jpg")) | |
| plt.close() | |
| if __name__ == "__main__": | |
| # Create an argument parser | |
| parser = argparse.ArgumentParser(description="CLIP Image Retriever") | |
| # Add arguments | |
| parser.add_argument( | |
| '--gallery-path', | |
| type=str, | |
| default="dataset/gallery/", | |
| help="Directory containing the gallery images" | |
| ) | |
| parser.add_argument( | |
| '--query-path', | |
| type=str, | |
| default="dataset/query/", | |
| help="Directory containing the query images" | |
| ) | |
| parser.add_argument( | |
| '--outDir', | |
| type=str, | |
| default="outputs/retrieval_clip", | |
| help="Directory containing the output plots" | |
| ) | |
| parser.add_argument( | |
| '--model', | |
| type=str, | |
| default="clip", | |
| help="Model type. i.e clip or dinov2" | |
| ) | |
| # Parse the arguments | |
| args = parser.parse_args() | |
| os.makedirs(args.outDir, exist_ok=True) | |
| retrieval(args) |