Create agents.py
Browse files
agents.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
|
| 4 |
+
from langgraph.graph import StateGraph, START, MessagesState
|
| 5 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 6 |
+
|
| 7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
+
from langchain_groq import ChatGroq
|
| 9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
| 10 |
+
|
| 11 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 12 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 14 |
+
|
| 15 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 16 |
+
from langchain_core.tools import tool
|
| 17 |
+
from langchain.tools.retriever import create_retriever_tool
|
| 18 |
+
|
| 19 |
+
from supabase.client import create_client, Client
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Load environment variables
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# ---- Basic Arithmetic Utilities ---- #
|
| 27 |
+
@tool
|
| 28 |
+
def multiply(a: int, b: int) -> int:
|
| 29 |
+
"""Returns the product of two integers."""
|
| 30 |
+
return a * b
|
| 31 |
+
|
| 32 |
+
@tool
|
| 33 |
+
def add(a: int, b: int) -> int:
|
| 34 |
+
"""Returns the sum of two integers."""
|
| 35 |
+
return a + b
|
| 36 |
+
|
| 37 |
+
@tool
|
| 38 |
+
def subtract(a: int, b: int) -> int:
|
| 39 |
+
"""Returns the difference between two integers."""
|
| 40 |
+
return a - b
|
| 41 |
+
|
| 42 |
+
@tool
|
| 43 |
+
def divide(a: int, b: int) -> float:
|
| 44 |
+
"""Performs division and handles zero division errors."""
|
| 45 |
+
if b == 0:
|
| 46 |
+
raise ValueError("Division by zero is undefined.")
|
| 47 |
+
return a / b
|
| 48 |
+
|
| 49 |
+
@tool
|
| 50 |
+
def modulus(a: int, b: int) -> int:
|
| 51 |
+
"""Returns the remainder after division."""
|
| 52 |
+
return a % b
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# ---- Search Tools ---- #
|
| 56 |
+
@tool
|
| 57 |
+
def search_wikipedia(query: str) -> str:
|
| 58 |
+
"""Returns up to 2 documents related to a query from Wikipedia."""
|
| 59 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 60 |
+
return {"wiki_results": "\n\n---\n\n".join(
|
| 61 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}'
|
| 62 |
+
for doc in docs
|
| 63 |
+
)}
|
| 64 |
+
|
| 65 |
+
@tool
|
| 66 |
+
def search_web(query: str) -> str:
|
| 67 |
+
"""Fetches up to 3 web results using Tavily."""
|
| 68 |
+
results = TavilySearchResults(max_results=3).invoke(query=query)
|
| 69 |
+
return {"web_results": "\n\n---\n\n".join(
|
| 70 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}'
|
| 71 |
+
for doc in results
|
| 72 |
+
)}
|
| 73 |
+
|
| 74 |
+
@tool
|
| 75 |
+
def search_arxiv(query: str) -> str:
|
| 76 |
+
"""Retrieves up to 3 papers related to the query from ArXiv."""
|
| 77 |
+
results = ArxivLoader(query=query, load_max_docs=3).load()
|
| 78 |
+
return {"arvix_results": "\n\n---\n\n".join(
|
| 79 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}'
|
| 80 |
+
for doc in results
|
| 81 |
+
)}
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 85 |
+
|
| 86 |
+
FINAL ANSWER: [YOUR FINAL ANSWER]
|
| 87 |
+
|
| 88 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
|
| 89 |
+
- If you are asked for a number, don't use a comma in the number and avoid units like $ or % unless specified otherwise.
|
| 90 |
+
- If you are asked for a string, avoid using articles and abbreviations (e.g. for cities), and write digits in plain text unless specified otherwise.
|
| 91 |
+
- If you are asked for a comma-separated list, apply the above rules depending on whether each item is a number or string.
|
| 92 |
+
|
| 93 |
+
Your answer should start only with "Responce: ", followed by your result.""")
|
| 94 |
+
|
| 95 |
+
toolset = [
|
| 96 |
+
multiply,
|
| 97 |
+
add,
|
| 98 |
+
subtract,
|
| 99 |
+
divide,
|
| 100 |
+
modulus,
|
| 101 |
+
search_wikipedia,
|
| 102 |
+
search_web,
|
| 103 |
+
search_arxiv,
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# ---- Graph Construction ---- #
|
| 108 |
+
def create_agent_flow(provider: str = "groq"):
|
| 109 |
+
"""Constructs the LangGraph conversational flow with tool support."""
|
| 110 |
+
|
| 111 |
+
if provider == "google":
|
| 112 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 113 |
+
elif provider == "groq":
|
| 114 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
| 115 |
+
elif provider == "huggingface":
|
| 116 |
+
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
|
| 117 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
| 118 |
+
temperature=0
|
| 119 |
+
))
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.")
|
| 122 |
+
|
| 123 |
+
llm_toolchain = llm.bind_tools(toolset)
|
| 124 |
+
|
| 125 |
+
# Assistant node behavior
|
| 126 |
+
def assistant_node(state: MessagesState):
|
| 127 |
+
response = llm_toolchain.invoke(state["messages"])
|
| 128 |
+
return {"messages": [response]}
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# Build the conversational graph
|
| 132 |
+
graph = StateGraph(MessagesState)
|
| 133 |
+
graph.add_node("assistant", assistant_node)
|
| 134 |
+
graph.add_node("tools", ToolNode(toolset))
|
| 135 |
+
graph.add_edge(START, "retriever")
|
| 136 |
+
graph.add_edge("retriever", "assistant")
|
| 137 |
+
graph.add_conditional_edges("assistant", tools_condition)
|
| 138 |
+
graph.add_edge("tools", "assistant")
|
| 139 |
+
|
| 140 |
+
return graph.compile()
|