Raresmuntenas commited on
Commit
c9de6c1
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -79
app.py CHANGED
@@ -3,23 +3,51 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
@@ -28,7 +56,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
28
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,14 +66,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
49
  print(agent_code)
50
 
51
  # 2. Fetch Questions
@@ -61,10 +90,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -73,14 +98,20 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
 
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
 
 
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
82
  try:
 
83
  submitted_answer = agent(question_text)
 
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
@@ -112,59 +143,31 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
112
  print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
  print(status_message)
139
  results_df = pd.DataFrame(results_log)
140
  return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
170
  fn=run_and_submit_all,
@@ -172,25 +175,4 @@ with gr.Blocks() as demo:
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool
7
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
 
12
  class BasicAgent:
13
  def __init__(self):
14
+ print("Initializing Smolagents CodeAgent...")
15
+
16
+ # 1. Define the Model
17
+ # Qwen 2.5 Coder is excellent for the logic/math required in GAIA
18
+ # It will automatically use the HF_TOKEN from your Space Secrets
19
+ model = HfApiModel(
20
+ model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
21
+ )
22
+
23
+ # 2. Define Tools
24
+ search_tool = DuckDuckGoSearchTool()
25
+
26
+ # 3. Initialize the Agent
27
+ # We allow imports like requests and bs4 so the agent can scrape if needed
28
+ self.agent = CodeAgent(
29
+ tools=[search_tool],
30
+ model=model,
31
+ additional_authorized_imports=["requests", "bs4", "datetime", "pandas", "math"],
32
+ max_steps=20, # Give it enough steps to think
33
+ verbosity_level=1
34
+ )
35
+ print("Agent initialized successfully.")
36
+
37
  def __call__(self, question: str) -> str:
38
+ print(f"Agent received question: {question}")
39
+ try:
40
+ # Run the smolagent
41
+ # We cast to string in case the agent returns a non-string object
42
+ answer = self.agent.run(question)
43
+ print(f"Agent calculated answer: {answer}")
44
+ return str(answer)
45
+ except Exception as e:
46
+ print(f"Agent failed with error: {e}")
47
+ return "Error processing request"
48
 
49
+ # --- Logic to Run and Submit (Provided by Course Template) ---
50
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
51
  """
52
  Fetches all questions, runs the BasicAgent on them, submits all answers,
53
  and displays the results.
 
56
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
57
 
58
  if profile:
59
+ username = f"{profile.username}"
60
  print(f"User logged in: {username}")
61
  else:
62
  print("User not logged in.")
 
66
  questions_url = f"{api_url}/questions"
67
  submit_url = f"{api_url}/submit"
68
 
69
+ # 1. Instantiate Agent
70
  try:
71
  agent = BasicAgent()
72
  except Exception as e:
73
  print(f"Error instantiating agent: {e}")
74
  return f"Error initializing agent: {e}", None
75
+
76
+ # Link to your codebase
77
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/generic/tree/main"
78
  print(agent_code)
79
 
80
  # 2. Fetch Questions
 
90
  except requests.exceptions.RequestException as e:
91
  print(f"Error fetching questions: {e}")
92
  return f"Error fetching questions: {e}", None
 
 
 
 
93
  except Exception as e:
94
  print(f"An unexpected error occurred fetching questions: {e}")
95
  return f"An unexpected error occurred fetching questions: {e}", None
 
98
  results_log = []
99
  answers_payload = []
100
  print(f"Running agent on {len(questions_data)} questions...")
101
+
102
+ for i, item in enumerate(questions_data):
103
  task_id = item.get("task_id")
104
  question_text = item.get("question")
105
+
106
+ print(f"Processing {i+1}/{len(questions_data)}: Task {task_id}")
107
+
108
  if not task_id or question_text is None:
 
109
  continue
110
+
111
  try:
112
+ # THE AGENT CALL
113
  submitted_answer = agent(question_text)
114
+
115
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
116
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
117
  except Exception as e:
 
143
  print("Submission successful.")
144
  results_df = pd.DataFrame(results_log)
145
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  except Exception as e:
147
+ status_message = f"Submission Failed: {e}"
148
  print(status_message)
149
  results_df = pd.DataFrame(results_log)
150
  return status_message, results_df
151
 
152
 
153
+ # --- Build Gradio Interface ---
154
  with gr.Blocks() as demo:
155
+ gr.Markdown("# Final Agent Evaluation Runner (SmolAgents)")
156
  gr.Markdown(
157
  """
158
  **Instructions:**
159
+ 1. Ensure `HF_TOKEN` is set in your Space Secrets.
160
+ 2. Log in via the button below.
161
+ 3. Click 'Run Evaluation'.
162
+
163
+ *Note: This process takes a few minutes as the agent thinks through 10-20 questions.*
 
 
 
 
164
  """
165
  )
166
 
167
  gr.LoginButton()
168
+ run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
169
+ status_output = gr.Textbox(label="Status", lines=5, interactive=False)
170
+ results_table = gr.DataFrame(label="Results", wrap=True)
 
 
 
171
 
172
  run_button.click(
173
  fn=run_and_submit_all,
 
175
  )
176
 
177
  if __name__ == "__main__":
178
+ demo.launch()