File size: 2,712 Bytes
f977fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c2352e4c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from utils.compute_tools import make_normalizer, load_normalizer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0a3a5a5e",
   "metadata": {},
   "source": [
    "## 1. normalization with max-min from your own results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e95b280a",
   "metadata": {},
   "outputs": [],
   "source": [
    "#read results from csv file\n",
    "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n",
    "\n",
    "benchmark_name=\"your_benchmark_name\" #set your desired benchmark_name\n",
    "metric = \"test metric\" #column containing test metrics in csv file\n",
    "make_normalizer(\n",
    "    results, \n",
    "    metrics=(metric,), \n",
    "    benchmark_name=benchmark_name\n",
    "    )\n",
    "\n",
    "#normalize results\n",
    "normalizer = load_normalizer(benchmark_name=benchmark_name)\n",
    "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n",
    "\n",
    "#save normalized values to file\n",
    "results.to_csv(\"examples/normalized_results_and_parameters.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d3f1e10",
   "metadata": {},
   "source": [
    "## 2. normalization with max-min from leaderboard base results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07a21745",
   "metadata": {},
   "outputs": [],
   "source": [
    "#read results from csv file\n",
    "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n",
    "\n",
    "metric = \"test metric\" #column containing test metrics in csv file\n",
    "make_normalizer(\n",
    "    results, \n",
    "    metrics=(metric,), \n",
    "    # benchmark_name=benchmark_name\n",
    "    )\n",
    "\n",
    "#normalize results\n",
    "normalizer = load_normalizer() #leave benchmark name blank to use default leaderboard normalization values\n",
    "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n",
    "\n",
    "#save normalized values to file\n",
    "results.to_csv(\"examples/normalized_results_and_parameters.csv\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}