File size: 29,792 Bytes
f977fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import json
import re
import os

import pandas as pd
import numpy as np
import pickle

from urllib.parse import quote
from pathlib import Path
import re
import html
from typing import Dict, Any
from scipy.stats import sem

from utils.constants import (NORM_BASE_SUBMISSION, DATASETS, DIGITS_FOR_VALUES, DIGITS_FOR_ERRORS,
                             DIMENSIONS, COLUMN_ORDER, MODEL_INFO_FILE, RESULTS_DIR)
from utils import compute_tools



def load_results(folder: str = RESULTS_DIR,
                items_to_ignore: list = ["__pycache__", "compiled.pkl", ".DS_Store"]
                ):
    """
    loads results from results folder.

    Args:
        folder: folder containing results
        items_to_ignore: list of items in results folder to ignore
    """
    #read model info
    with open(MODEL_INFO_FILE) as f:
        model_info = json.load(f)
    model_size = model_info["MODEL_SIZE"]
    backbone_names = model_info["BACKBONE_NAMES"]

    #read submission info
    all_submissions = os.listdir(folder)
    for item in items_to_ignore:
        if item in all_submissions: all_submissions.remove(item)

    all_submission_results = {}
    #TODO: add some info to json files and read here also
    all_full_ft_model_names = []
    all_frozen_model_names = []
    all_submission_results["frozen"] = {}
    all_submission_results["full_ft"] = {}
    for submission in all_submissions:        
        combined_results = pd.read_csv(f"{folder}/{submission}/results_and_parameters.csv")
        combined_results = combined_results.drop(["index"], errors='ignore')
        try:
            frozen_or_full_ft = combined_results["frozen_or_full_ft"][0]    
        except KeyError as e:
            KeyError(f"{combined_results=}")
        all_submission_results[frozen_or_full_ft][submission] = {}

        combined_results["# params"]  = combined_results.apply(lambda row: model_size[row.backbone], axis=1)
        combined_results["Model"]  = combined_results.apply(lambda row: backbone_names[row.backbone], axis=1)
        combined_results["Config Settings"]  = combined_results.apply(lambda row: get_config_setting_string(row), axis=1)

        #TODO: read json info
        all_backbones = list(set(combined_results["backbone"].tolist()))
        all_submission_results[frozen_or_full_ft][submission]["results"] = combined_results
        all_submission_results[frozen_or_full_ft][submission]["all_backbones"] = all_backbones
        
        config_settings = combined_results[["early_stop_patience", "decoder", "n_trials", "data_percentages", "batch_size_selection"]].iloc[0]
        config_settings = config_settings.replace("early_stopping_50", "50").replace("n_trials_16", "16").replace("data_100_perc", "100") 
        all_submission_results[frozen_or_full_ft][submission]["config_info"] = config_settings
        
        #all_submission_results[submission]["json_info"] = json_info
        if frozen_or_full_ft =="frozen":
            all_frozen_model_names.extend(all_backbones)
        else:
            all_full_ft_model_names.extend(all_backbones)

    all_frozen_model_names = list(set(all_frozen_model_names))
    all_full_ft_model_names = list(set(all_full_ft_model_names))
    all_model_names = {"full_ft": all_full_ft_model_names, "frozen": all_frozen_model_names}
    return all_submission_results, all_model_names, all_submissions



def compute_all_iqms(
                all_submission_results: dict,
                benchmark_name: str,
                dataset_group_keys:list =["backbone", "dataset"],
                overall_group_keys:list = ["backbone"],
                metric:str ="test metric",
                ) -> Dict:
    """
    - reads combined results from repeated seeds for multiple models
    - computes the raw and normalized IQM by dataset for each model by task type
    - computes the raw and normalized overall IQM across multiple datasets in each each task type
    
    Args:
        all_submission_results: dict containing all results
        benchmark_name: name of normalizer file to be used
        dataset_group_keys: grouping for computing dataset IQM
        overall_group_keys: grouping for computing overall IQM
        metric: the column containing scores/values in the combined results tables
    """
    output = {}
    for submission in all_submission_results:
        output[submission] = {}
        print(f'\n\n\n{submission=}')
        submission_backbones = all_submission_results[submission]["all_backbones"]

        #TODO: remove
        partition_name =  "0.10x train" if "data_10_perc" in submission else "1.00x train" 
        submission_results = all_submission_results[submission]["results"]
        if not "partition name" in list(submission_results.columns):
            submission_results["partition name"] = partition_name 
        submission_results["partition name"] = partition_name 

        #get raw values per dataset
        series = submission_results.groupby(dataset_group_keys)[metric].apply(np.mean)
        raw_per_dataset = series.to_frame().reset_index()
        raw_per_dataset = raw_per_dataset.drop(columns=["partition name"], errors='ignore') 
        included_datsets = [d for d in DATASETS if d in set(raw_per_dataset["dataset"])]
        raw_per_dataset_final = pd.DataFrame(columns=["backbone"] + included_datsets)
        
        #get raw errors per dataset
        series = submission_results.groupby(dataset_group_keys)[metric].apply(sem)
        raw_per_dataset_err = series.to_frame().reset_index()
        raw_per_dataset_err = raw_per_dataset_err.drop(columns=["partition name"], errors='ignore') 
        raw_per_dataset_final_err = pd.DataFrame(columns=["backbone"] + included_datsets)
       
        #rearrange
        for backbone in submission_backbones:
            #get values
            data = raw_per_dataset.loc[raw_per_dataset["backbone"] == backbone]
            data = data.drop(columns=["backbone"]).rename(columns={metric: backbone, "dataset": "backbone"})
            data = data.set_index(['backbone']).T.reset_index()
            data = data.rename(columns={"index": "backbone"})
            try:
                data = data.loc[:, ["backbone"] + included_datsets]
            except KeyError as e:
                print(f'{backbone} {e=}')
                continue

            raw_per_dataset_final = data.copy() if len(raw_per_dataset_final.index)==0 else pd.concat([raw_per_dataset_final, data], ignore_index=True)

            #get errors
            data_err = raw_per_dataset_err.loc[raw_per_dataset_err["backbone"] == backbone]
            data_err = data_err.drop(columns=["backbone"]).rename(columns={metric: backbone, "dataset": "backbone"})
            data_err = data_err.set_index(['backbone']).T.reset_index()
            data_err = data_err.rename(columns={"index": "backbone"})
            data_err = data_err.loc[:, ["backbone"] + included_datsets]
            raw_per_dataset_final_err = data_err.copy() if len(raw_per_dataset_final_err.index)==0 else pd.concat([raw_per_dataset_final_err, data_err], ignore_index=True)

        raw_per_dataset_final = raw_per_dataset_final.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
        raw_per_dataset_final_err = raw_per_dataset_final_err.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
        raw_per_dataset_final = raw_per_dataset_final.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
        raw_per_dataset_final_err = raw_per_dataset_final_err.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)

        #normalize results
        normalizer = compute_tools.load_normalizer(benchmark_name=benchmark_name)
        new_metric = normalizer.normalize_data_frame(df=submission_results, metric=metric)
        
        #get normalized values  per dataset
        series = submission_results.groupby(dataset_group_keys)[new_metric].apply(compute_tools.iqm)
        normalized_per_dataset = series.to_frame().reset_index()
        normalized_per_dataset = normalized_per_dataset.drop(columns=["partition name"], errors='ignore') 
        included_datsets = [d for d in DATASETS if d in set(normalized_per_dataset["dataset"])]
        normalized_per_dataset_final = pd.DataFrame(columns=["backbone"] + included_datsets)

        #get normalized errors per dataset
        series = submission_results.groupby(dataset_group_keys)[new_metric].apply(compute_tools.trimmed_sem)
        normalized_per_dataset_err = series.to_frame().reset_index()
        normalized_per_dataset_err = normalized_per_dataset_err.drop(columns=["partition name"], errors='ignore') 
        normalized_per_dataset_final_err = pd.DataFrame(columns=["backbone"] + included_datsets)

        #rearrange
        for backbone in submission_backbones:
            #get values
            data = normalized_per_dataset.loc[normalized_per_dataset["backbone"] == backbone]
            data = data.drop(columns=["backbone"]).rename(columns={new_metric: backbone, "dataset": "backbone"})
            data = data.set_index(['backbone']).T.reset_index()
            data = data.rename(columns={"index": "backbone"})
            try:
                data = data.loc[:, ["backbone"] + included_datsets]
            except KeyError as e:
                print(f'{backbone} {e=}')
                continue
            normalized_per_dataset_final = data.copy() if len(normalized_per_dataset_final.index)==0 else pd.concat([normalized_per_dataset_final, data], ignore_index=True)

            #get errors
            data_err = normalized_per_dataset_err.loc[normalized_per_dataset["backbone"] == backbone]
            data_err = data_err.drop(columns=["backbone"]).rename(columns={new_metric: backbone, "dataset": "backbone"})
            data_err = data_err.set_index(['backbone']).T.reset_index()
            data_err = data_err.rename(columns={"index": "backbone"})
            data_err = data_err.loc[:, ["backbone"] + included_datsets]
            normalized_per_dataset_final_err = data_err.copy() if len(normalized_per_dataset_final_err.index)==0 else pd.concat([normalized_per_dataset_final_err, data_err], ignore_index=True)

        normalized_per_dataset_final = normalized_per_dataset_final.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
        normalized_per_dataset_final_err = normalized_per_dataset_final_err.reset_index(drop=True).rename_axis(mapper=None, axis='columns')
        normalized_per_dataset_final =normalized_per_dataset_final.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)
        normalized_per_dataset_final_err =normalized_per_dataset_final_err.reindex(columns=["backbone"]+DATASETS, fill_value=np.nan)

        #get normalized values by dimension
        normalized_overall = pd.DataFrame(columns=["backbone"])
        normalized_overall_std_err = pd.DataFrame(columns=["backbone"])
        submission_dimensions = []
        for dimension in DIMENSIONS:
            dimension_data = submission_results.loc[submission_results["dataset"].isin(DIMENSIONS[dimension])].copy()
            dimension_datasets = sorted(set(dimension_data["dataset"]))
            dimension_backbones = sorted(set(dimension_data["backbone"]))
            exclude_backbone = []
            for backbone in dimension_backbones:
                backbone_datasets = dimension_data.loc[dimension_data["backbone"] == backbone]["dataset"].tolist()
                if set(backbone_datasets) != set(dimension_datasets):
                    #if backbone is missing datasets, drop from table
                    exclude_backbone.append(backbone)
                    
            dimension_datasets = [True if d in dimension_datasets else False for d in DIMENSIONS[dimension]]
            # dimension_data = dimension_data[~dimension_data["backbone"].isin(exclude_backbone)]
            if all(dimension_datasets): 
                submission_dimensions.append(dimension)
                
                #get values
                normalized_iqms_dimension = compute_tools.bootstrap_iqm_aggregate(dimension_data, metric= new_metric)
                series = normalized_iqms_dimension.groupby(overall_group_keys)[new_metric].apply(np.mean)
                normalized_iqms_dimension = series.to_frame().reset_index()
                normalized_iqms_dimension = normalized_iqms_dimension.rename(columns={new_metric: dimension})
                normalized_iqms_dimension.loc[normalized_iqms_dimension["backbone"].isin(exclude_backbone), dimension, ] = np.nan

            
                #get errors
                normalized_dimension_std_err = compute_tools.bootstrap_iqm_aggregate(dimension_data, metric=new_metric)
                series = normalized_dimension_std_err.groupby(["backbone"])[new_metric].apply(sem)
                # series = submission_results.loc[submission_results["dataset"].isin(DIMENSIONS[dimension])].copy()
                # series = series[~series["dataset"].isin(exclude_backbone)]
                # series = series.groupby(overall_group_keys)[new_metric].apply(sem)
                normalized_dimension_std_err = series.to_frame().reset_index()  
                normalized_dimension_std_err = normalized_dimension_std_err.drop(columns=["partition name"], errors='ignore') 
                normalized_dimension_std_err = normalized_dimension_std_err.rename(columns={new_metric: dimension})
                normalized_dimension_std_err.loc[normalized_dimension_std_err["backbone"].isin(exclude_backbone), dimension] = np.nan
                # series = dimension_data.groupby(overall_group_keys)[new_metric].apply(sem)
                # normalized_dimension_std_err = series.to_frame().reset_index()
                # normalized_dimension_std_err = normalized_dimension_std_err.rename(columns={new_metric: dimension})
            else:
                normalized_iqms_dimension = pd.DataFrame({
                    "backbone": submission_backbones,
                    dimension: [np.nan] * len(submission_backbones),
                })
                normalized_dimension_std_err = pd.DataFrame({
                    "backbone": submission_backbones,
                    dimension: [np.nan] * len(submission_backbones),
                })
                
            normalized_iqms_dimension.sort_values(by=['backbone'], inplace=True)
            normalized_dimension_std_err.sort_values(by=['backbone'], inplace=True)
            normalized_overall = normalized_iqms_dimension.copy() if len(normalized_overall.index)==0 else normalized_overall.merge(normalized_iqms_dimension, how="left", on="backbone")
            normalized_overall_std_err = normalized_dimension_std_err.copy() if len(normalized_overall_std_err.index)==0 else normalized_overall_std_err.merge(normalized_dimension_std_err, how="left", on="backbone")

        output[submission]["raw_per_dataset"] = raw_per_dataset_final
        output[submission]["normalized_per_dataset"] = normalized_per_dataset_final
        output[submission]["normalized_overall"] = normalized_overall
        output[submission]["raw_per_dataset_err"] = raw_per_dataset_final_err
        output[submission]["normalized_per_dataset_err"] = normalized_per_dataset_final_err
        output[submission]["normalized_overall_err"] = normalized_overall_std_err
        output[submission]["submission_dimensions"] = submission_dimensions
    return output



def format_values(x):
    x = x*100
    x = round(x,1)
    return x


def format_errors(x):
    x = x*100
    x = round(x,1)
    return x


def get_config_setting_string(row) -> str:
    config_settings = f"""
                        Early Stop Patience: {row.early_stop_patience} /
                        Decoder: {row.decoder} /
                        # trials: {row.n_trials} /
                        Data : {row.data_percentages}% /
                        Batch Size Selection: {row.batch_size_selection}
                        """
    config_settings = config_settings.replace("early_stopping_50", "50").replace("n_trials_16", "16").replace("data_100_perc", "100") 
    return config_settings


def get_overall_performance_table(all_submission_results: dict, 
                                all_iqms: dict
                                ) -> Dict:
    """
    create tables for 'Aggregated Performance' page.

    Args:
        all_submission_results: dict containing all results
        all_iqms: dict containing all computed results

    """
    output = {}
    result_type = ["normalized"]
    for value in result_type:
        all_tables = []
        all_tables_err = []
        for submission in all_submission_results:
            #get results
            submission_data = all_iqms[submission][f"{value}_overall"].copy()
            submission_data["Model"] = "-"
            submission_data["# params"] = "-"
            submission_data["submission"] = submission

            submission_data_err = all_iqms[submission][f"{value}_overall_err"].copy()
            submission_data_err["Config Settings"] = "-"
            submission_data_err["Model"] = "-"
            submission_data_err["# params"] = "-"
            submission_data_err["submission"] = submission

            #get parameters
            parameters = all_submission_results[submission]["results"]
            for backbone in all_submission_results[submission]["all_backbones"]:
                submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]

                submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
            all_tables.append(submission_data)
            all_tables_err.append(submission_data_err)
            print(f'\n\n\n {submission} {value} {submission_data[["Core", "Detection (Object/Instance)", "Model", "submission"]].head(50)=}')

        all_tables = pd.concat(all_tables)
        all_tables_err = pd.concat(all_tables_err)
        all_tables.loc[:, COLUMN_ORDER[value]["overall_table"]] = all_tables[COLUMN_ORDER[value]["overall_table"]].round(DIGITS_FOR_VALUES).apply(lambda series: series.apply(format_values))    
        all_tables_err.loc[:, COLUMN_ORDER[value]["overall_table"]]= all_tables_err[COLUMN_ORDER[value]["overall_table"]].round(DIGITS_FOR_ERRORS).apply(lambda series: series.apply(format_errors))  
        all_tables = all_tables[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["overall_table"]]
        all_tables_err = all_tables_err[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["overall_table"]]
        for col in COLUMN_ORDER[value]["overall_table"]:
            new_column = f"{col}"
            all_tables = all_tables.rename(columns={col: new_column})
            all_tables_err = all_tables_err.rename(columns={col: new_column})
        output[value] = all_tables
        output[f"{value}_err"] = all_tables_err
    return output

        
def get_performance_by_dimension_table(all_submission_results: dict, 
                                       all_iqms: dict
                                        ) -> Dict:
    """
    create tables for 'Capabilities' page.

    Args:
        all_submission_results: dict containing all results
        all_iqms: dict containing all computed results

    """
    output = {}
    result_type = ["normalized"]
    for value in result_type:
        all_tables = {}
        all_tables_err = {}
        for dimension in DIMENSIONS:
            dimension_tables = []
            dimension_tables_err = []
            for submission in all_submission_results:
                #get results
                submission_data = all_iqms[submission][f"{value}_per_dataset"][DIMENSIONS[dimension]+["backbone"]].copy()
                dimension_results = all_iqms[submission][f"{value}_overall"][[dimension]+["backbone"]].copy()
                submission_data = submission_data.merge(dimension_results, how="left", on="backbone")
                submission_data["Model"] = "-"
                submission_data["# params"] = "-"
                submission_data["submission"] = submission

                submission_data_err = all_iqms[submission][f"{value}_per_dataset_err"][DIMENSIONS[dimension]+["backbone"]].copy()
                dimension_results_err = all_iqms[submission][f"{value}_overall_err"][[dimension]+["backbone"]].copy()
                submission_data_err = submission_data_err.merge(dimension_results_err, how="left", on="backbone")
                submission_data_err["Model"] = "-"
                submission_data_err["# params"] = "-"
                submission_data_err["submission"] = submission

                #get parameters
                parameters = all_submission_results[submission]["results"]
                for backbone in all_submission_results[submission]["all_backbones"]:
                    submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                    submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]

                    submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                    submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
                dimension_tables.append(submission_data)
                dimension_tables_err.append(submission_data_err)
                # print(f'\n\n\n {submission} {dimension} {submission_data[[dimension, "Model", "submission"]].head(50)=}')

            dimension_tables = pd.concat(dimension_tables)
            dimension_tables.loc[:, DIMENSIONS[dimension]] = dimension_tables[DIMENSIONS[dimension]].round(DIGITS_FOR_VALUES).apply(lambda series: series.apply(format_values))        
            dimension_tables.loc[:, dimension] = dimension_tables[dimension].round(DIGITS_FOR_VALUES).apply(format_values)
            dimension_tables = dimension_tables[COLUMN_ORDER["all_tables"] + [dimension] + COLUMN_ORDER[value]["dimension_tables"]  + DIMENSIONS[dimension]]
            new_column = f"{dimension}"
            dimension_tables = dimension_tables.rename(columns={dimension: new_column})
            all_tables[dimension] = dimension_tables

            dimension_tables_err = pd.concat(dimension_tables_err)
            dimension_tables_err.loc[:, DIMENSIONS[dimension]] = dimension_tables_err[DIMENSIONS[dimension]].round(DIGITS_FOR_ERRORS).apply(lambda series: series.apply(format_errors))        
            dimension_tables_err.loc[:, dimension] = dimension_tables_err[dimension].round(DIGITS_FOR_ERRORS).apply(format_errors)
            dimension_tables_err = dimension_tables_err[COLUMN_ORDER["all_tables"] + [dimension] + COLUMN_ORDER[value]["dimension_tables"]  + DIMENSIONS[dimension]]
            dimension_tables_err  = dimension_tables_err.rename(columns={dimension: new_column})
            all_tables_err[f"{dimension}_err"] = dimension_tables_err

        output[value] = all_tables
        output[f"{value}_err"] = all_tables_err
    return output  


def get_datasets_tables(all_submission_results: dict, 
                        all_iqms: dict
                        ) -> Dict:
    """
    creates tables for dataset tab.

    Args:
        all_submission_results: dict containing all results
        all_iqms: dict containing all computed results
    """
    output = {}
    result_type = ["normalized","raw"]
    for value in result_type:
        all_tables = {}
        all_tables_err = {}
        for dataset in DATASETS:
            dataset_tables = []
            dataset_tables_err = []
            for submission in all_submission_results:
                #get results
                submission_data = all_iqms[submission][f"{value}_per_dataset"][["backbone", dataset]].copy()
                submission_data["Model"] = "-"
                submission_data["# params"] = "-"
                submission_data["submission"] = submission

                submission_data_err = all_iqms[submission][f"{value}_per_dataset_err"][["backbone", dataset]].copy()
                submission_data_err["Model"] = "-"
                submission_data_err["# params"] = "-"
                submission_data_err["submission"] = submission

                #get parameters
                parameters = all_submission_results[submission]["results"]
                new_column = "IQM" if value == "normalized" else "Mean"

                for backbone in all_submission_results[submission]["all_backbones"]:
                    submission_data.loc[submission_data["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                    submission_data.loc[submission_data["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
                    submission_data = submission_data.rename(columns={dataset: new_column})

                    submission_data_err.loc[submission_data_err["backbone"] == backbone, "Model"] = parameters.loc[parameters["backbone"] == backbone]["Model"].tolist()[0]
                    submission_data_err.loc[submission_data_err["backbone"] == backbone, "# params"] = parameters.loc[parameters["backbone"] == backbone]["# params"].tolist()[0]
                    submission_data_err = submission_data_err.rename(columns={dataset: new_column})
                    #TODO: add columns
                dataset_tables.append(submission_data)
                dataset_tables_err.append(submission_data_err)
            column = "IQM" if value == "normalized" else "Mean"
            dataset_tables = pd.concat(dataset_tables)
            dataset_tables.loc[:, column] = dataset_tables[column].round(DIGITS_FOR_VALUES).apply(format_values)
            all_tables[dataset] = dataset_tables[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["dataset_tables"]]

            dataset_tables_err = pd.concat(dataset_tables_err)
            dataset_tables_err.loc[:, column] = dataset_tables_err[column].round(DIGITS_FOR_ERRORS).apply(format_errors)
            all_tables_err[dataset] = dataset_tables_err[COLUMN_ORDER["all_tables"] + COLUMN_ORDER[value]["dataset_tables"]]

        output[value] = all_tables
        output[f"{value}_err"] = all_tables_err
    return output   


def get_submission_tables(all_submission_results: dict):
    output = {}
    frozen_or_full_ft = ["frozen" ,"full_ft"]
    config_info = []
    for method in frozen_or_full_ft:
        for sub in all_submission_results[method]:
            config = all_submission_results[method][sub]["config_info"]
            config = config.to_frame().T
            config["submission"] = sub
            config["backbone method"] = method
            config_info.append(config)
    output = pd.concat(config_info)
    output = output[COLUMN_ORDER["submission_info"]]
    return output   




if __name__ == "__main__":
    #load results
    all_submission_results, all_model_names, all_submissions = load_results(folder=RESULTS_DIR)

    #COMBINED NORM
    norm_base_results= [] 
    for method in NORM_BASE_SUBMISSION:
        for sub in NORM_BASE_SUBMISSION[method]:
            norm_base_results.append(all_submission_results[method][sub]["results"].copy())
    norm_base_results = pd.concat(norm_base_results)
    benchmark_name = "leaderboard_combined"  
    compute_tools.make_normalizer(norm_base_results.reset_index(), 
                                    metrics=("test metric",), 
                                    benchmark_name=benchmark_name)

    overall_performance_tables = {}
    performance_by_dimension_tables = {}
    datasets_tables = {}
    for method in ["full_ft","frozen"]:
        method_iqms = compute_all_iqms(
                                all_submission_results =  all_submission_results[method],
                                benchmark_name = benchmark_name,
                                )
    
        #create tables to be rendered
        overall_performance_tables[method] = get_overall_performance_table(all_submission_results=all_submission_results[method],
                                                                    all_iqms=method_iqms)
        performance_by_dimension_tables[method] = get_performance_by_dimension_table(all_submission_results=all_submission_results[method],
                                                                            all_iqms=method_iqms)
        datasets_tables[method] = get_datasets_tables(all_submission_results=all_submission_results[method],
                                                all_iqms=method_iqms)

    submission_info_table = get_submission_tables(all_submission_results=all_submission_results)
        
    compiled_results = {
                        "overall_performance_tables": overall_performance_tables,
                        "performance_by_dimension_tables": performance_by_dimension_tables,
                        "datasets_tables": datasets_tables,
                        "submission_info_table": submission_info_table
                        }

    with open(f'{RESULTS_DIR}/compiled.pkl', 'wb') as handle:
        pickle.dump(compiled_results, handle, protocol=pickle.HIGHEST_PROTOCOL)