|
|
from pathlib import Path |
|
|
|
|
|
NORM_BASE_SUBMISSION = { |
|
|
"full_ft": ["114be1f0-5a41-43a5-b4e6-7fb683bc01ec", "2ce4a907-7ae3-45d3-a07a-558f8d0d758b"], |
|
|
|
|
|
} |
|
|
DIGITS_FOR_VALUES = 3 |
|
|
DIGITS_FOR_ERRORS = 6 |
|
|
REQUIRED_SEEDS = 5 |
|
|
|
|
|
|
|
|
DIMENSIONS = { |
|
|
"Multi-Spectral-Dependent": ["benv2", "biomassters", "pastis", "so2sat", "cloudsen12", "spacenet2", "burn_scars", "fotw",], |
|
|
"Multi-Temporal": ['kuro_siwo','pastis', 'biomassters', 'dynamic_earthnet', ], |
|
|
"Pixel-wise": ['kuro_siwo', 'pastis', 'burn_scars', 'spacenet2', 'cloudsen12', 'caffe', 'flair2','dynamic_earthnet','biomassters', "spacenet7", "fotw",], |
|
|
"Classification": ['so2sat', 'forestnet', 'benv2', 'treesatai'], |
|
|
"Detection (Object/Instance)": ["substation", "everwatch", "nzcattle", "pastis_r",], |
|
|
"Under 10m Resolution": ["spacenet2","treesatai", "flair2",'dynamic_earthnet', "spacenet7"], |
|
|
"10m and Above Resolution": ["biomassters", "so2sat", "kuro_siwo", "cloudsen12", "pastis", "benv2", "forestnet", "burn_scars", "caffe", "fotw",], |
|
|
"RGB/NIR": ["flair2", "treesatai", 'dynamic_earthnet', "spacenet7", "fotw",], |
|
|
"Core": ['kuro_siwo', 'pastis', 'burn_scars', 'cloudsen12', 'flair2', "spacenet7", 'benv2', 'treesatai', 'biomassters', "fotw","substation", "everwatch", ], |
|
|
} |
|
|
|
|
|
|
|
|
DIMENSION_INFO = { |
|
|
"Multi-Spectral-Dependent": "datasets that have a statistically significant increase in perfromance when mutlispectral bands are used", |
|
|
"Multi-Temporal": "datasets with more than 1 timestamps used as an input", |
|
|
"Pixel-wise": "datasets for pixel-wise segmentation and regression", |
|
|
"Classification": "single-label and multi-label classification datasets", |
|
|
"Detection (Object/Instance)":"datasets for instance segmentation and object detection", |
|
|
"Under 10m Resolution": "datasets with resolution <= 1 metre", |
|
|
"10m and Above Resolution": "datasets with 10 metres =< resolution <= 30 metres", |
|
|
"RGB/NIR": "datasets using Red, Green, Blue, and NIR bands", |
|
|
"Core": "subset with datasets from each dimension", |
|
|
} |
|
|
|
|
|
|
|
|
DATASETS = [ |
|
|
'biomassters', 'so2sat', 'forestnet', 'benv2', 'treesatai', |
|
|
'kuro_siwo', 'dynamic_earthnet', 'pastis', 'burn_scars', 'spacenet2', |
|
|
'cloudsen12', 'fotw', 'caffe', 'flair2', "spacenet7", |
|
|
"substation", "everwatch", "nzcattle", "pastis_r", |
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
DATASET_INFO = { |
|
|
"Dataset": [item.replace("_", " ").title() for item in DATASETS], |
|
|
"Description": [ |
|
|
"regression dataset for Above Ground Biomass (AGB) prediction", |
|
|
"multi-class classifictaion dataset for Global Local Climate Zones", |
|
|
"multi-class classifictaion dataset for deforestation drivers", |
|
|
"multi-label classifictaion dataset for land cover", |
|
|
"multi-label classifictaion dataset for tree species", |
|
|
"SAR semantic segmentation dataset for rapid flood mapping", |
|
|
"semantic segmentation dataset for land use/land cover", |
|
|
"semantic segmentation dataset for agricultural parcels", |
|
|
"semantic segmentation dataset for burn scars", |
|
|
"semantic segmentation dataset for building detection", |
|
|
"semantic segmentation dataset for cloud and cloud shadow detection", |
|
|
"semantic/instance segmentation dataset for agricultural fields ", |
|
|
"semantic/instance segmentation dataset for glacier calving front extraction", |
|
|
"semantic segmentation dataset for land use/land cover", |
|
|
"semantic segmentation dataset for building detection", |
|
|
"instance segmentation dataset for substations", |
|
|
"object detection dataset for bird species", |
|
|
"object detection dataset for cattle", |
|
|
"instance segmentation dataset for crop type mapping", |
|
|
], |
|
|
"Dimensions": [", ".join([dim for dim, data_list in DIMENSIONS.items() if dataset in data_list]) for dataset in DATASETS] |
|
|
} |
|
|
|
|
|
|
|
|
COLUMN_ORDER = { |
|
|
"raw": { |
|
|
"dataset_tables": ['Mean'], |
|
|
"dimension_tables": [] |
|
|
}, |
|
|
"normalized": { |
|
|
"overall_table": [ |
|
|
"Core", "Multi-Spectral-Dependent", "Multi-Temporal", "Pixel-wise", "Classification", "Detection (Object/Instance)", |
|
|
"Under 10m Resolution", "10m and Above Resolution", |
|
|
"RGB/NIR", |
|
|
], |
|
|
"dataset_tables": ['IQM'] , |
|
|
"dimension_tables": [] |
|
|
|
|
|
}, |
|
|
"all_tables": ['Model', '# params', 'submission'], |
|
|
"submission_info": ["submission", "backbone method", "decoder", "n_trials", "early_stop_patience", "data_percentages", "batch_size_selection" ], |
|
|
} |
|
|
|
|
|
root = Path(__file__).parent.resolve() |
|
|
root = "/".join(str(root).split("/")[:-1]) |
|
|
RESULTS_DIR = f"{root}/results" |
|
|
MODEL_INFO_FILE = f"{root}/utils/model_info.json" |
|
|
NORMALIZER_DIR = f"{root}/utils/normalizer" |
|
|
|
|
|
|
|
|
|
|
|
NEW_SUBMISSION_FOLDER = f"{root}/new_submission" |
|
|
CSV_FILE = "results_and_parameters.csv" |
|
|
JSON_FILE = "additional_info.json" |
|
|
NEW_SUBMISSION_COLUMN_INFO = { |
|
|
"string_cols": ['dataset', 'Metric', 'experiment_name', 'partition name', 'backbone', 'decoder','batch_size_selection', 'frozen_or_full_ft'], |
|
|
"integer_cols": ['early_stop_patience', 'n_trials', 'Seed', 'data_percentages', 'batch_size'], |
|
|
"float_cols": ['weight_decay', 'lr', 'test metric', ] |
|
|
} |
|
|
NEW_SUBMISSION_COLUMN_NAMES = [] |
|
|
for key, value in NEW_SUBMISSION_COLUMN_INFO.items(): |
|
|
NEW_SUBMISSION_COLUMN_NAMES.extend(value) |
|
|
|
|
|
|
|
|
JSON_FORMAT = { |
|
|
"Paper Link": "N/A", |
|
|
"Code Repository Link ": "N/A", |
|
|
"License": "N/A", |
|
|
"Number of HPO trials": "16", |
|
|
"Additional information about submission": "N/A", |
|
|
"Comments on new models in submission": "N/A", |
|
|
"New model info": |
|
|
[ |
|
|
{ |
|
|
"model_display_name": "TBD", |
|
|
"model_size": "TBD", |
|
|
"unique_backbone_key": "TBD" |
|
|
} |
|
|
] |
|
|
} |