{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "c2352e4c", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from utils.compute_tools import make_normalizer, load_normalizer" ] }, { "cell_type": "markdown", "id": "0a3a5a5e", "metadata": {}, "source": [ "## 1. normalization with max-min from your own results" ] }, { "cell_type": "code", "execution_count": null, "id": "e95b280a", "metadata": {}, "outputs": [], "source": [ "#read results from csv file\n", "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n", "\n", "benchmark_name=\"your_benchmark_name\" #set your desired benchmark_name\n", "metric = \"test metric\" #column containing test metrics in csv file\n", "make_normalizer(\n", " results, \n", " metrics=(metric,), \n", " benchmark_name=benchmark_name\n", " )\n", "\n", "#normalize results\n", "normalizer = load_normalizer(benchmark_name=benchmark_name)\n", "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n", "\n", "#save normalized values to file\n", "results.to_csv(\"examples/normalized_results_and_parameters.csv\")" ] }, { "cell_type": "markdown", "id": "7d3f1e10", "metadata": {}, "source": [ "## 2. normalization with max-min from leaderboard base results" ] }, { "cell_type": "code", "execution_count": null, "id": "07a21745", "metadata": {}, "outputs": [], "source": [ "#read results from csv file\n", "results = pd.read_csv(f\"examples/results_and_parameters.csv\")\n", "\n", "metric = \"test metric\" #column containing test metrics in csv file\n", "make_normalizer(\n", " results, \n", " metrics=(metric,), \n", " # benchmark_name=benchmark_name\n", " )\n", "\n", "#normalize results\n", "normalizer = load_normalizer() #leave benchmark name blank to use default leaderboard normalization values\n", "new_metric = normalizer.normalize_data_frame(df=results, metric=metric)\n", "\n", "#save normalized values to file\n", "results.to_csv(\"examples/normalized_results_and_parameters.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 5 }