import os import sys from huggingface_hub import hf_hub_download import spaces from facenet_pytorch import MTCNN from torchvision import transforms import torch import PIL from PIL import Image import gradio as gr # Download models modelarcanev4 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.4", filename="ArcaneGANv0.4.jit") modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit") modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit") mtcnn = MTCNN(image_size=256, margin=80) # Face detection def detect(img): batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True) if not mtcnn.keep_all: batch_boxes, batch_probs, batch_points = mtcnn.select_boxes( batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method ) return batch_boxes, batch_points def makeEven(_x): return _x if (_x % 2 == 0) else _x+1 def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False): x, y = _img.size ratio = 2 if (boxes is not None): if len(boxes)>0: ratio = target_face/max(boxes[0][2:]-boxes[0][:2]) ratio = min(ratio, max_upscale) if fixed_ratio>0: ratio = fixed_ratio x*=ratio y*=ratio res = x*y if res > max_res: ratio = pow(res/max_res,1/2) x=int(x/ratio) y=int(y/ratio) x = makeEven(int(x)) y = makeEven(int(y)) size = (x, y) return _img.resize(size) def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False): boxes = None boxes, _ = detect(_img) img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE) return img_resized # Image processing setup size = 256 means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] img_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(means, stds) ]) @spaces.GPU def proc_pil_img(input_image, model_path): """GPU-accelerated image processing with half precision support""" # Load model on GPU model = torch.jit.load(model_path, map_location='cuda').eval() # Create tensors on GPU in half precision to match model t_stds = torch.tensor(stds).cuda().half().view(3, 1, 1) t_means = torch.tensor(means).cuda().half().view(3, 1, 1) # Transform image and move to GPU with half precision transformed_image = img_transforms(input_image).unsqueeze(0).cuda().half() with torch.no_grad(): result_image = model(transformed_image)[0] # Convert back to float for post-processing output_image = result_image.float().mul(t_stds.float()).add(t_means.float()).mul(255.).clamp(0, 255).permute(1, 2, 0) output_image = output_image.cpu().numpy().astype('uint8') output_image = PIL.Image.fromarray(output_image) # Clean up del model torch.cuda.empty_cache() return output_image @spaces.GPU def process(im, version): """Main processing function with GPU acceleration""" if im is None: raise gr.Error("Please upload an image first!") try: # Ensure image is PIL Image if not isinstance(im, Image.Image): im = Image.fromarray(im) # Convert to RGB if needed if im.mode != 'RGB': im = im.convert('RGB') # Scale image (CPU operation) im = scale_by_face_size(im, target_face=256, max_res=1_500_000, max_upscale=1) # Select model based on version if version == 'v0.4 (Recommended)': res = proc_pil_img(im, modelarcanev4) elif version == 'v0.3': res = proc_pil_img(im, modelarcanev3) else: res = proc_pil_img(im, modelarcanev2) return res except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") # Custom theme custom_theme = gr.themes.Soft( primary_hue="blue", secondary_hue="indigo", neutral_hue="slate", font=gr.themes.GoogleFont("Inter"), text_size="lg", spacing_size="md", radius_size="lg" ).set( button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_700", block_title_text_weight="600", block_border_width="2px", block_shadow="*shadow_drop_lg", ) # Custom CSS for mobile-friendly design custom_css = """ .gradio-container { max-width: 1200px !important; margin: auto !important; } #header { text-align: center; margin-bottom: 2rem; } #header h1 { font-size: 2.5rem; font-weight: 700; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 0.5rem; } #description { font-size: 1.1rem; color: #64748b; margin-bottom: 1rem; } .input-column, .output-column { border-radius: 16px; padding: 1.5rem; background: linear-gradient(135deg, rgba(102, 126, 234, 0.05) 0%, rgba(118, 75, 162, 0.05) 100%); } @media (max-width: 768px) { #header h1 { font-size: 2rem; } #description { font-size: 1rem; } .input-column, .output-column { padding: 1rem; } } #footer { text-align: center; margin-top: 2rem; padding: 1.5rem; border-top: 2px solid #e2e8f0; } #footer a { color: #667eea; text-decoration: none; font-weight: 600; } #footer a:hover { color: #764ba2; text-decoration: underline; } .example-container { margin-top: 1rem; } .gpu-badge { display: inline-block; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 0.5rem 1rem; border-radius: 20px; font-weight: 600; margin-top: 0.5rem; } #anycoder-link { text-align: center; margin-top: 0.5rem; } #anycoder-link a { color: #667eea; text-decoration: none; font-weight: 600; font-size: 0.9rem; } #anycoder-link a:hover { color: #764ba2; text-decoration: underline; } """ # Build the interface with gr.Blocks() as demo: # Header with gr.Column(elem_id="header"): gr.Markdown( """ # 🎨 ArcaneGAN ### Transform Your Photos into Arcane-Style Art Upload a portrait and watch it transform into the stunning visual style of Netflix's Arcane series. ⚡ Powered by Zero-GPU """ ) gr.Markdown( "[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)", elem_id="anycoder-link" ) # Main content with gr.Row(equal_height=True): # Input column with gr.Column(scale=1, elem_classes="input-column"): gr.Markdown("### 📤 Upload Your Photo") input_image = gr.Image( type="pil", label="Input Image", sources=["upload", "webcam", "clipboard"], height=400 ) version_selector = gr.Radio( choices=['v0.4 (Recommended)', 'v0.3', 'v0.2'], value='v0.4 (Recommended)', label="Model Version", info="v0.4 offers the best quality" ) transform_btn = gr.Button( "✨ Transform to Arcane Style", variant="primary", size="lg" ) # Output column with gr.Column(scale=1, elem_classes="output-column"): gr.Markdown("### 🎠Arcane-Style Result") output_image = gr.Image( type="pil", label="Transformed Image", height=400, buttons=["download", "share"] ) # Tips section with gr.Row(): gr.Markdown( """ ### 💡 Tips for Best Results - Use clear, well-lit portrait photos - Face should be clearly visible and not too small - Works best with frontal or slightly angled faces - Try different model versions for varied artistic styles """ ) # Footer with gr.Column(elem_id="footer"): gr.Markdown( """ --- **ArcaneGAN** by [Alexander S](https://twitter.com/devdef) | [GitHub Repository](https://github.com/Sxela/ArcaneGAN) | [Original Space](https://huggingface.co/spaces/akhaliq/ArcaneGAN) **⚡ Zero-GPU Optimization**: This Space uses Hugging Face's Zero-GPU infrastructure for efficient GPU allocation. **Model Versions:** - **v0.4**: Latest and recommended - best quality and style accuracy - **v0.3**: Alternative style interpretation - **v0.2**: Original version with unique characteristics