Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,17 @@
|
|
| 1 |
import json
|
| 2 |
import random
|
| 3 |
-
import requests
|
| 4 |
-
import os
|
| 5 |
-
from PIL import Image
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
from diffusers import DiffusionPipeline, LCMScheduler
|
| 12 |
-
from peft import PeftModel
|
| 13 |
-
|
| 14 |
-
# Custom LCMScheduler to ignore unexpected attributes
|
| 15 |
-
class CustomLCMScheduler(LCMScheduler):
|
| 16 |
-
@property
|
| 17 |
-
def config(self):
|
| 18 |
-
return {k: v for k, v in super().config.items() if k != "skip_prk_steps"}
|
| 19 |
-
|
| 20 |
-
def get_image(image_data):
|
| 21 |
-
if isinstance(image_data, str):
|
| 22 |
-
return image_data
|
| 23 |
-
|
| 24 |
-
if isinstance(image_data, dict):
|
| 25 |
-
local_path = image_data.get('local_path')
|
| 26 |
-
hf_url = image_data.get('hf_url')
|
| 27 |
-
else:
|
| 28 |
-
print(f"Unexpected image_data format: {type(image_data)}")
|
| 29 |
-
return None
|
| 30 |
-
|
| 31 |
-
# Try loading from local path first
|
| 32 |
-
if local_path and os.path.exists(local_path):
|
| 33 |
-
try:
|
| 34 |
-
Image.open(local_path).verify() # Verify that it's a valid image
|
| 35 |
-
return local_path
|
| 36 |
-
except Exception as e:
|
| 37 |
-
print(f"Error loading local image {local_path}: {e}")
|
| 38 |
-
|
| 39 |
-
# If local path fails or doesn't exist, try URL
|
| 40 |
-
if hf_url:
|
| 41 |
-
try:
|
| 42 |
-
response = requests.get(hf_url)
|
| 43 |
-
if response.status_code == 200:
|
| 44 |
-
img = Image.open(requests.get(hf_url, stream=True).raw)
|
| 45 |
-
img.verify() # Verify that it's a valid image
|
| 46 |
-
img.save(local_path) # Save for future use
|
| 47 |
-
return local_path
|
| 48 |
-
else:
|
| 49 |
-
print(f"Failed to fetch image from URL {hf_url}. Status code: {response.status_code}")
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Error loading image from URL {hf_url}: {e}")
|
| 52 |
-
|
| 53 |
-
print(f"Failed to load image for {image_data}")
|
| 54 |
-
return None
|
| 55 |
|
| 56 |
with open("sdxl_lora.json", "r") as file:
|
| 57 |
data = json.load(file)
|
| 58 |
sdxl_loras_raw = [
|
| 59 |
{
|
| 60 |
-
"image":
|
| 61 |
"title": item["title"],
|
| 62 |
"repo": item["repo"],
|
| 63 |
"trigger_word": item["trigger_word"],
|
|
@@ -69,27 +23,33 @@ with open("sdxl_lora.json", "r") as file:
|
|
| 69 |
for item in data
|
| 70 |
]
|
| 71 |
|
|
|
|
| 72 |
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
|
| 73 |
|
| 74 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 75 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 76 |
|
| 77 |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
|
| 78 |
-
pipe.scheduler =
|
|
|
|
| 79 |
pipe.to(device=DEVICE, dtype=torch.float16)
|
| 80 |
|
| 81 |
-
# Load Flash SDXL LoRA
|
| 82 |
-
flash_sdxl_id = "jasperai/flash-sdxl"
|
| 83 |
-
pipe.load_lora_weights(flash_sdxl_id, adapter_name="flash_lora")
|
| 84 |
|
| 85 |
MAX_SEED = np.iinfo(np.int32).max
|
| 86 |
MAX_IMAGE_SIZE = 1024
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
|
| 90 |
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
|
|
|
|
| 91 |
return lora_id, trigger_word
|
| 92 |
|
|
|
|
| 93 |
@spaces.GPU
|
| 94 |
def infer(
|
| 95 |
pre_prompt,
|
|
@@ -103,51 +63,19 @@ def infer(
|
|
| 103 |
user_lora_weight,
|
| 104 |
progress=gr.Progress(track_tqdm=True),
|
| 105 |
):
|
| 106 |
-
|
| 107 |
-
# Load the user-selected LoRA
|
| 108 |
-
new_adapter_id = user_lora_selector.replace("/", "_")
|
| 109 |
-
pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
gr.Info("LoRA setup complete")
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
if pre_prompt != "":
|
| 121 |
-
prompt = f"{pre_prompt} {prompt}"
|
| 122 |
-
|
| 123 |
-
# Use Flash Diffusion settings
|
| 124 |
-
image = pipe(
|
| 125 |
-
prompt=prompt,
|
| 126 |
-
negative_prompt=negative_prompt,
|
| 127 |
-
guidance_scale=1.0, # Flash Diffusion typically uses guidance_scale=1
|
| 128 |
-
num_inference_steps=4, # Flash Diffusion uses fewer steps
|
| 129 |
-
generator=generator,
|
| 130 |
-
).images[0]
|
| 131 |
-
|
| 132 |
-
return image
|
| 133 |
-
except Exception as e:
|
| 134 |
-
gr.Error(f"An error occurred: {str(e)}")
|
| 135 |
-
return None
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
pre_prompt,
|
| 140 |
-
prompt,
|
| 141 |
-
seed,
|
| 142 |
-
randomize_seed,
|
| 143 |
-
num_inference_steps,
|
| 144 |
-
negative_prompt,
|
| 145 |
-
guidance_scale,
|
| 146 |
-
user_lora_selector,
|
| 147 |
-
user_lora_weight,
|
| 148 |
-
progress=gr.Progress(track_tqdm=True),
|
| 149 |
-
):
|
| 150 |
-
load_lora_for_style(user_lora_selector)
|
| 151 |
|
| 152 |
if randomize_seed:
|
| 153 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 1 |
import json
|
| 2 |
import random
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
from diffusers import DiffusionPipeline, LCMScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
with open("sdxl_lora.json", "r") as file:
|
| 11 |
data = json.load(file)
|
| 12 |
sdxl_loras_raw = [
|
| 13 |
{
|
| 14 |
+
"image": item["image"],
|
| 15 |
"title": item["title"],
|
| 16 |
"repo": item["repo"],
|
| 17 |
"trigger_word": item["trigger_word"],
|
|
|
|
| 23 |
for item in data
|
| 24 |
]
|
| 25 |
|
| 26 |
+
# Sort the loras by likes
|
| 27 |
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
|
| 28 |
|
| 29 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 31 |
|
| 32 |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
|
| 33 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 34 |
+
pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora")
|
| 35 |
pipe.to(device=DEVICE, dtype=torch.float16)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
| 39 |
MAX_IMAGE_SIZE = 1024
|
| 40 |
|
| 41 |
+
|
| 42 |
+
def update_selection(
|
| 43 |
+
selected_state: gr.SelectData,
|
| 44 |
+
gr_sdxl_loras,
|
| 45 |
+
):
|
| 46 |
+
|
| 47 |
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
|
| 48 |
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
|
| 49 |
+
|
| 50 |
return lora_id, trigger_word
|
| 51 |
|
| 52 |
+
|
| 53 |
@spaces.GPU
|
| 54 |
def infer(
|
| 55 |
pre_prompt,
|
|
|
|
| 63 |
user_lora_weight,
|
| 64 |
progress=gr.Progress(track_tqdm=True),
|
| 65 |
):
|
| 66 |
+
flash_sdxl_id = "jasperai/flash-sdxl"
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
new_adapter_id = user_lora_selector.replace("/", "_")
|
| 69 |
+
loaded_adapters = pipe.get_list_adapters()
|
|
|
|
| 70 |
|
| 71 |
+
if new_adapter_id not in loaded_adapters["unet"]:
|
| 72 |
+
gr.Info("Swapping LoRA")
|
| 73 |
+
pipe.unload_lora_weights()
|
| 74 |
+
pipe.load_lora_weights(flash_sdxl_id, adapter_name="lora")
|
| 75 |
+
pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
pipe.set_adapters(["lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight])
|
| 78 |
+
gr.Info("LoRA setup done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
if randomize_seed:
|
| 81 |
seed = random.randint(0, MAX_SEED)
|