File size: 51,416 Bytes
489330d 0d7134a 489330d 25749cb 0d7134a 25749cb 0d7134a 25749cb 489330d 25749cb 489330d 25749cb b22d0c1 489330d 621839e 25749cb 489330d 25749cb 1505807 25749cb 0d7134a 25749cb 0d7134a 489330d 0d7134a 489330d 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 489330d 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 1505807 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb a853808 b69bbf2 a853808 b69bbf2 a853808 b69bbf2 a853808 b69bbf2 de1e7d9 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 489330d 25749cb 489330d bb6302e 489330d bb6302e 489330d bb6302e 489330d 25749cb 0d7134a 25749cb 0d7134a 201403c 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 489330d 25749cb 0d7134a 25749cb 489330d 25749cb 0d7134a 25749cb 489330d 25749cb 05f3926 e58d161 05f3926 25749cb 05f3926 25749cb 05f3926 0d7134a e58d161 25749cb e58d161 25749cb e58d161 25749cb e58d161 25749cb e58d161 25749cb 0d7134a 25749cb 024fd70 25749cb 0d7134a 25749cb 489330d 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 621839e 974355e 621839e 974355e 621839e 974355e 621839e 974355e 621839e 974355e 621839e 974355e bb6302e 974355e bb6302e f72c130 bb6302e f72c130 bb6302e f72c130 bb6302e f72c130 bb6302e f72c130 bb6302e f72c130 bb6302e 621839e 2227290 621839e f72c130 621839e f72c130 621839e 974355e b22d0c1 974355e 621839e 974355e f72c130 23fcf2d f72c130 974355e f72c130 974355e f72c130 974355e f72c130 621839e 70e511b 3153d6a 70e511b 3153d6a de1e7d9 70e511b de1e7d9 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b de1e7d9 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b 3153d6a 70e511b de1e7d9 621839e 3153d6a 9145a6f a4d6f85 974355e a4d6f85 974355e 33581aa f72c130 621839e f72c130 bb6302e f72c130 621839e bb6302e 621839e bb6302e f72c130 621839e f72c130 621839e f72c130 621839e f72c130 25749cb 2227290 25749cb 0d7134a 25749cb 0d7134a 024fd70 0d7134a 25749cb 024fd70 25749cb 489330d 25749cb b147442 25749cb b147442 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 974355e 0d7134a 974355e 25749cb 974355e 25749cb 974355e 0d7134a 974355e 25749cb 974355e 621839e 974355e 621839e 974355e 621839e 0d7134a 974355e 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 0d7134a 25749cb 489330d 25749cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Hunyuan3D Full Pipeline (aptol/genshin 메인) — Weaponless + T-Pose + 6-View
STEP1: 전처리 (rembg, DINO+SAM+LaMa weapon remove, T-pose enforce via ControlNet, img2img redraw)
STEP2: Space 호출 (model / optional texture)
STEP3: 6-view 렌더 ZIP + Blender 오토리깅(FBX) + VRM(옵션) + 기본 BlendShapes + Unity Animator 스크립트
권장 패키지:
pip install gradio gradio_client pillow numpy opencv-python
pip install rembg
pip install diffusers transformers accelerate torch --extra-index-url https://download.pytorch.org/whl/cu121
pip install controlnet-aux
pip install groundingdino segment-anything
pip install lama-cleaner
pip install trimesh pyrender PyOpenGL
환경변수(옵션):
HF_TOKEN=hf_xxx
BLENDER_PATH=/path/to/blender
DINO_CFG=./GroundingDINO_SwinT_OGC.py
DINO_WEIGHTS=./groundingdino_swint_ogc.pth
SAM_WEIGHTS=./sam_vit_h_4b8939.pth
"""
import os, io, json, time, math, random, shutil, zipfile, hashlib, tempfile, subprocess, textwrap, traceback
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from PIL import Image as PILImage, ImageDraw, ImageFilter
import gradio as gr
try:
import spaces
except Exception:
class _Dummy:
def GPU(self, *a, **k):
def deco(fn): return fn
return deco
spaces = _Dummy()
from PIL import Image, ImageDraw
# ---- HF Spaces GPU decorator (호환용 더미 포함)
try:
import spaces
except Exception:
class _Dummy:
def GPU(self, *a, **k):
def deco(fn): return fn
return deco
spaces = _Dummy()
# ---------------------------------
# PATHS
# ---------------------------------
ROOT = Path(__file__).resolve().parent
OUT = ROOT / "outputs"
(OUT / "step1").mkdir(parents=True, exist_ok=True)
(OUT / "step2").mkdir(parents=True, exist_ok=True)
(OUT / "step2b").mkdir(parents=True, exist_ok=True)
(OUT / "step3").mkdir(parents=True, exist_ok=True)
(OUT / "exports").mkdir(parents=True, exist_ok=True)
# ---------------------------------
# OPTIONAL IMPORTS (lazy)
# ---------------------------------
def _lazy():
P = {}
try:
import numpy as np
P["np"] = np
except Exception:
P["np"] = None
try:
import cv2
P["cv2"] = cv2
except Exception:
P["cv2"] = None
try:
from gradio_client import Client
P["Client"] = Client
except Exception:
P["Client"] = None
try:
import trimesh, pyrender
P["trimesh"] = __import__("trimesh")
P["pyrender"] = __import__("pyrender")
except Exception:
P["trimesh"] = None
P["pyrender"] = None
# rembg
try:
from rembg import remove as rembg_remove
P["rembg_remove"] = rembg_remove
except Exception:
P["rembg_remove"] = None
# diffusers (img2img)
try:
from diffusers import StableDiffusionImg2ImgPipeline
import torch
P["sd_img2img"] = StableDiffusionImg2ImgPipeline
P["torch"] = torch
except Exception:
P["sd_img2img"] = None
P["torch"] = None
# ControlNet (OpenPose) for T-POSE enforce
try:
from diffusers import ControlNetModel, StableDiffusionControlNetImg2ImgPipeline
P["ControlNetModel"] = ControlNetModel
P["SD_CN_Img2Img"] = StableDiffusionControlNetImg2ImgPipeline
except Exception:
P["ControlNetModel"] = None
P["SD_CN_Img2Img"] = None
# controlnet_aux (OpenposeDetector)
try:
from controlnet_aux import OpenposeDetector
P["OpenposeDetector"] = OpenposeDetector
except Exception:
P["OpenposeDetector"] = None
# GroundingDINO
try:
from groundingdino.util.inference import load_model, predict
P["g_load_model"] = load_model
P["g_predict"] = predict
except Exception:
P["g_load_model"] = None
P["g_predict"] = None
# SAM
try:
from segment_anything import sam_model_registry, SamPredictor
P["sam_model_registry"] = sam_model_registry
P["SamPredictor"] = SamPredictor
except Exception:
P["sam_model_registry"] = None
P["SamPredictor"] = None
# LaMa
try:
from lama_cleaner.model_manager import ModelManager
P["LaMaManager"] = ModelManager
except Exception:
P["LaMaManager"] = None
return P
PKG = _lazy()
def _device():
try:
t = PKG["torch"]
if t is not None and t.cuda.is_available():
return "cuda"
except Exception:
pass
return "cpu"
# ---------------------------------
# Spaces profiles (genshin 메인)
# ---------------------------------
SPACES: Dict[str, Dict[str, Any]] = {
"genshin (main)": {
"repo": "aptol/genshin",
"api_model": "/run",
"api_texture": "/texture",
"variants_model": [
("prompt","image","steps","guidance","seed"),
("prompt","image"),
("image","steps","guidance","seed"),
("image",),
],
"variants_texture": [
("glb","steps","guidance"),
("glb",),
],
},
"fork (backend)": {
"repo": "aptol/Hunyuan3D-2.1",
"api_model": "/run",
"api_texture": "/texture",
"variants_model": [
("prompt","image","steps","guidance","seed"),
("prompt","image"),
("image","steps","guidance","seed"),
("image",),
],
"variants_texture": [
("glb","steps","guidance"),
("glb",),
],
},
"tencent (upstream)": {
"repo": "tencent/Hunyuan3D-2.1",
"api_model": "/run",
"api_texture": "/texture",
"variants_model": [
("prompt","image","steps","guidance","seed"),
("prompt","image"),
("image","steps","guidance","seed"),
("image",),
],
"variants_texture": [
("glb","steps","guidance"),
("glb",),
],
},
"<custom>": {
"repo": "",
"api_model": "/run",
"api_texture": "/texture",
"variants_model": [("prompt","image","steps","guidance","seed"),("prompt","image"),("image","steps","guidance","seed"),("image",)],
"variants_texture": [("glb","steps","guidance"),("glb",)],
}
}
# ---------------------------------
# Utility
# ---------------------------------
def _disable_safety(pipe):
"""
Diffusers SafetyChecker 완전 비활성화 (0.29.x 호환).
run_safety_checker가 항상 (images, [False]*BATCH) 형태를 반환하게 만든다.
"""
try:
def _dummy_run_safety_checker(images, device=None, dtype=None):
# images: torch.Tensor [B,C,H,W] 또는 list/tuple 길이 B
try:
if hasattr(images, "shape"):
batch = int(images.shape[0])
else:
batch = len(images)
except Exception:
batch = 1
return images, [False] * max(1, batch) # ★ 리스트 보장
pipe.run_safety_checker = _dummy_run_safety_checker # ★ 핵심
pipe.safety_checker = None
# 혹시 내부에서 feature_extractor를 호출해도 터지지 않도록 '호출 가능한' 더미 제공
pipe.feature_extractor = (lambda *args, **kwargs: None)
except Exception:
pass
return pipe
def _openpose_canvas_from_image(img_rgb: Image.Image) -> Image.Image:
try:
if PKG.get("OpenposeDetector") is None:
return Image.new("RGB", img_rgb.size, "black")
det = PKG["OpenposeDetector"]()
pose = det(img_rgb)
return pose.convert("RGB").resize(img_rgb.size)
except Exception:
return Image.new("RGB", img_rgb.size, "black")
def _blend_pose_canvases(orig_pose: Image.Image, tpose: Image.Image, alpha: float = 0.4) -> Image.Image:
alpha = max(0.0, min(1.0, float(alpha)))
if orig_pose.size != tpose.size:
tpose = tpose.resize(orig_pose.size)
return Image.blend(orig_pose, tpose, alpha).convert("RGB")
def _mean_brightness(img: Image.Image) -> float:
import numpy as np
return float(np.asarray(img.convert("L"), dtype=np.uint8).mean())
def _save_png(img: Image.Image, path: Union[str,Path]) -> str:
p = Path(path); p.parent.mkdir(parents=True, exist_ok=True); img.save(p); return str(p)
def _cache_key(img_path: str, opt: Dict[str,Any]) -> str:
b = Path(img_path).read_bytes()
digest = hashlib.sha256(b + json.dumps(opt, sort_keys=True).encode()).hexdigest()[:24]
return digest
def _hf_client(repo: str):
if PKG["Client"] is None:
raise RuntimeError("gradio_client 설치 필요: pip install gradio_client")
tok = os.getenv("HF_TOKEN", None)
return PKG["Client"](repo, hf_token=tok)
def _call_space(repo: str, api_name: str, variant: Tuple[str,...], payload: Dict[str,Any]):
client = _hf_client(repo)
args = []
for k in variant:
args.append(payload[k])
try:
return client.predict(*args, api_name=api_name)
except Exception:
job = client.submit(*args, api_name=api_name)
return job.result()
def _pick_glb(res: Any) -> Optional[str]:
if isinstance(res, str) and res.lower().endswith(".glb"):
return res
if isinstance(res, (list,tuple)):
for it in res:
p = _pick_glb(it)
if p: return p
if isinstance(res, dict):
for k in ("glb","path","file","result","data"):
if k in res:
p = _pick_glb(res[k])
if p: return p
if hasattr(res, "name") and str(res.name).lower().endswith(".glb"):
return str(res.name)
return None
# ---------------------------------
# STEP1: BG remove / WEAPON remove / T-POSE / Redraw
# ---------------------------------
def _remove_bg(img: Image.Image) -> Image.Image:
"""
rembg를 안전하게 호출 (PNG 바이트 왕복).
결과가 완전 투명(알파 0%)이면 실패로 간주하고 원본을 반환.
"""
try:
from rembg import remove
buf = io.BytesIO()
img.convert("RGBA").save(buf, format="PNG")
out_bytes = remove(buf.getvalue()) # bytes in → bytes out
out = Image.open(io.BytesIO(out_bytes)).convert("RGBA")
# 완전 투명 체크: 알파 채널 bbox가 없으면 전부 0
alpha = out.getchannel("A")
if alpha.getbbox() is None:
# 전부 투명 -> 실패 처리
return img.convert("RGBA")
return out
except Exception:
return img.convert("RGBA")
def _to_preview(img: Image.Image, bg=(40, 40, 40)) -> Image.Image:
"""
갤러리 미리보기용으로 RGBA 이미지를 불투명 배경에 합성.
저장물은 RGBA 그대로 두고, UI 표시만 보기 좋게.
"""
if img.mode != "RGBA":
return img.convert("RGB")
bg_img = Image.new("RGB", img.size, bg)
bg_img.paste(img, mask=img.split()[-1])
return bg_img
# ---- Weapon remove (DINO -> SAM -> LaMa/OpenCV)
_DINO_MODEL = None
def _dino_boxes(img: Image.Image, text_prompt: str) -> List[Tuple[int,int,int,int]]:
global _DINO_MODEL
if PKG["g_load_model"] is None or PKG["g_predict"] is None or PKG["np"] is None:
return []
cfg = os.getenv("DINO_CFG", str(ROOT/"GroundingDINO_SwinT_OGC.py"))
wts = os.getenv("DINO_WEIGHTS", str(ROOT/"groundingdino_swint_ogc.pth"))
if not Path(cfg).exists() or not Path(wts).exists():
return []
try:
if _DINO_MODEL is None:
_DINO_MODEL = PKG["g_load_model"](cfg, wts)
np = PKG["np"]; im = np.array(img.convert("RGB"))
boxes, logits, phrases = PKG["g_predict"](
model=_DINO_MODEL, image=im, caption=text_prompt,
box_threshold=0.25, text_threshold=0.25
)
out=[]
for b in boxes:
x1,y1,x2,y2 = [int(x) for x in b.tolist()]
out.append((x1,y1,x2,y2))
return out
except Exception:
return []
_SAM_PRED = None
def _sam_mask(img: Image.Image, boxes: List[Tuple[int,int,int,int]]) -> Optional[Image.Image]:
if not boxes: return None
if PKG["sam_model_registry"] is None or PKG["SamPredictor"] is None or PKG["np"] is None:
return None
ckpt = os.getenv("SAM_WEIGHTS", str(ROOT/"sam_vit_h_4b8939.pth"))
if not Path(ckpt).exists():
return None
try:
global _SAM_PRED
if _SAM_PRED is None:
sam = PKG["sam_model_registry"]["vit_h"](checkpoint=ckpt)
_SAM_PRED = PKG["SamPredictor"](sam)
np = PKG["np"]
arr = np.array(img.convert("RGB"))
_SAM_PRED.set_image(arr)
H,W = arr.shape[:2]
m_all = np.zeros((H,W), dtype=np.uint8)
for (x1,y1,x2,y2) in boxes:
box = PKG["np"].array([x1,y1,x2,y2])
masks, scores, _ = _SAM_PRED.predict(box=box, multimask_output=True)
if masks is not None and len(masks)>0:
m = (masks[scores.argmax()].astype("uint8")*255)
m_all = PKG["np"].maximum(m_all, m)
return Image.fromarray(m_all, mode="L")
except Exception:
return None
def _lama_inpaint(img: Image.Image, mask: Image.Image) -> Image.Image:
"""
우선 simple-lama-inpainting 사용, 실패 시 OpenCV로 폴백.
ZeroGPU 안전: CPU만 사용.
"""
if mask is None:
return img
# 1) simple-lama-inpainting (선택 설치)
try:
from simple_lama_inpainting import SimpleLama
import numpy as np, cv2
model = SimpleLama() # CPU 추론
src = np.array(img.convert("RGB"))
m = np.array(mask.convert("L"))
# simple-lama는 마스크가 255=인페인트 영역일 때 동작
if m.max() <= 1:
m = (m * 255).astype("uint8")
res = model(src, m) # (H,W,3) np.uint8 반환
return Image.fromarray(res)
except Exception:
pass
# 2) OpenCV 폴백
try:
import numpy as np, cv2
src = cv2.cvtColor(np.array(img.convert("RGB")), cv2.COLOR_RGB2BGR)
m = np.array(mask.convert("L"))
if m.max() <= 1:
m = (m * 255).astype("uint8")
# feather 조금 주면 경계 부드러움
m = cv2.GaussianBlur(m, (0,0), 1.2)
dst = cv2.inpaint(src, (m>127).astype("uint8")*255, 3, cv2.INPAINT_TELEA)
return Image.fromarray(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB))
except Exception:
return img
def _refine_mask_with_morph(mask_pil: Image.Image, ksize: int = 5, dilate_iter: int = 1, erode_iter: int = 1) -> Image.Image:
if PKG["cv2"] is None or PKG["np"] is None:
return mask_pil
cv2, np = PKG["cv2"], PKG["np"]
m = np.array(mask_pil.convert("L"))
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (ksize, ksize))
m = cv2.dilate(m, k, iterations=dilate_iter)
m = cv2.erode(m, k, iterations=erode_iter)
m = cv2.GaussianBlur(m, (0, 0), 1.5) # feather
return Image.fromarray(m.clip(0, 255).astype("uint8"), "L")
def _filter_weapon_boxes(boxes: List[Tuple[int,int,int,int]], img_size: Tuple[int,int]) -> List[Tuple[int,int,int,int]]:
W, H = img_size
out = []
for (x1, y1, x2, y2) in boxes:
w, h = max(1, x2 - x1), max(1, y2 - y1)
area = w * h
aspect = max(w, h) / max(1, min(w, h))
if area < (W * H * 0.005): # 너무 작은 건 버림(0.5%)
continue
if aspect < 2.2: # 창/장병기(길쭉함) 우선
continue
out.append((x1, y1, x2, y2))
return out or boxes
def _weaponless_pipeline(img: Image.Image, terms: str, logs: List[str]) -> Image.Image:
boxes = _dino_boxes(img, terms or "weapon, sword, spear, lance, polearm, bow, gun, axe, dagger")
if not boxes:
logs.append("무기 탐지 실패 또는 DINO/SAM 미설치 → 무기 제거 스킵(프롬프트 가중만)")
return img
boxes = _filter_weapon_boxes(boxes, img.size)
mask = _sam_mask(img, boxes)
if mask is None:
logs.append("SAM 마스크 생성 실패 → 무기 제거 스킵")
return img
mask = _refine_mask_with_morph(mask, ksize=5, dilate_iter=1, erode_iter=1)
out = _lama_inpaint(img, mask)
logs.append(f"무기 제거 완료 (boxes={len(boxes)})")
return out
# ---- T-POSE enforce
def _draw_tpose_openpose_canvas(size=768) -> Image.Image:
"""간단 T포즈 스켈레톤 가이드 이미지(흑배경 흰선). ControlNet 힌트로 사용."""
img = Image.new("RGB", (size,size), "black")
d = ImageDraw.Draw(img)
cx, cy = size//2, int(size*0.6)
arm = int(size*0.35); leg = int(size*0.35); head = int(size*0.06)
# body
d.line([ (cx, cy-int(size*0.25)), (cx, cy+int(size*0.05)) ], fill="white", width=6) # spine
# arms (T)
d.line([ (cx-arm, cy-int(size*0.20)), (cx+arm, cy-int(size*0.20)) ], fill="white", width=6)
# legs
d.line([ (cx, cy+int(size*0.05)), (cx-int(leg*0.6), cy+leg) ], fill="white", width=6)
d.line([ (cx, cy+int(size*0.05)), (cx+int(leg*0.6), cy+leg) ], fill="white", width=6)
# head
d.ellipse([ (cx-head, cy-int(size*0.35)-head), (cx+head, cy-int(size*0.35)+head) ], outline="white", width=6)
return img
def _tpose_controlnet(img: Image.Image, logs: List[str],
strength=0.6, steps=25, guidance=7.5) -> Image.Image:
"""ControlNet(OpenPose)으로 T포즈 강제 (설치 시). 실패 시 프롬프트만."""
if PKG["ControlNetModel"] is None or PKG["SD_CN_Img2Img"] is None or PKG["torch"] is None:
logs.append("ControlNet 미설치 → T-포즈는 프롬프트로만 유도")
return img
try:
dev = _device()
cn = PKG["ControlNetModel"].from_pretrained(
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=PKG["torch"].float16 if dev=="cuda" else PKG["torch"].float32
)
pipe = PKG["SD_CN_Img2Img"].from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=cn,
torch_dtype=PKG["torch"].float16 if dev=="cuda" else PKG["torch"].float32
)
if dev=="cuda":
pipe.to("cuda")
pose_canvas = _draw_tpose_openpose_canvas(size=max(img.size))
out = pipe(
prompt="T-pose, full body, clean anime lines",
image=img.convert("RGB"),
control_image=pose_canvas,
strength=float(strength),
guidance_scale=float(guidance),
num_inference_steps=int(steps)
).images[0]
logs.append("ControlNet(OpenPose) T-포즈 적용")
return out
except Exception as e:
logs.append(f"T-포즈 ControlNet 실패: {e}")
return img
# ---- img2img redraw(클린업)
def _redraw(img: Image.Image, strength=0.5, steps=25, guidance=7.0) -> Image.Image:
if PKG["sd_img2img"] is None or PKG["torch"] is None:
return img
try:
dev = _device()
pipe = PKG["sd_img2img"].from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=PKG["torch"].float16 if dev=="cuda" else PKG["torch"].float32
)
if dev=="cuda": pipe.to("cuda")
out = pipe(
prompt="clean anime illustration, sharp lines, simple solid background",
image=img.convert("RGB"),
strength=float(strength),
guidance_scale=float(guidance),
num_inference_steps=int(steps)
).images[0]
return out
except Exception:
return img
def step1_preprocess(img: Image.Image,
keep_rembg: bool,
do_weaponless: bool,
weapon_terms: str,
enforce_tpose: bool,
tpose_strength: float,
tpose_steps: int,
tpose_guidance: float,
do_redraw_flag: bool,
redraw_strength: float,
redraw_steps: int,
redraw_guidance: float) -> Tuple[List[Image.Image], str, str]:
logs=[]
if img is None: raise gr.Error("이미지를 업로드하세요.")
base = img.convert("RGBA")
if keep_rembg:
base = _remove_bg(base); logs.append("rembg 배경 제거")
if do_weaponless:
base = _weaponless_pipeline(base, weapon_terms, logs)
if enforce_tpose:
base = _tpose_controlnet(base, logs, strength=tpose_strength, steps=tpose_steps, guidance=tpose_guidance)
if do_redraw_flag:
base = _redraw(base, redraw_strength, redraw_steps, redraw_guidance)
p = _save_png(base, OUT/"step1"/"input_preprocessed.png")
return [base], p, "\n".join(logs)
def step1_cpu(img, keep_rembg, do_weaponless, weapon_terms):
"""CPU 단계: rembg + (있으면) DINO/SAM/LaMa로 무기 제거. CUDA 사용 금지"""
logs = []
if img is None:
raise gr.Error("이미지를 업로드하세요.")
base = img.convert("RGBA")
# rembg (완전 투명 방지 포함)
try:
base2 = _remove_bg(base) if keep_rembg else base
if keep_rembg:
logs.append("rembg 배경 제거")
base = base2
except Exception as e:
logs.append(f"rembg 실패: {e}")
# DINO/SAM/LaMa 무기 제거
try:
if do_weaponless:
base = _weaponless_pipeline(base, weapon_terms, logs)
except Exception as e:
logs.append(f"무기 제거 실패: {e}")
# 파일 저장
out_path = _save_png(base, OUT / "step1" / "input_preprocessed.png")
# 갤러리에는 보기 좋은 미리보기(배경 합성), 디버그는 파일 경로 그대로
preview = _to_preview(base)
return [preview], str(out_path), "\n".join(logs), str(out_path) # ✅ 4개 반환
def _resize_to_multiple(img: Image.Image, multiple: int = 8, max_side: int = 768) -> Image.Image:
"""Aspect 유지 + 8의 배수 리사이즈 (최대 변은 max_side)"""
w, h = img.size
# 최대 변 제한
scale = min(1.0, float(max_side) / float(max(w, h)))
w = int(w * scale); h = int(h * scale)
# 8 배수로 내림
w = max(multiple, (w // multiple) * multiple)
h = max(multiple, (h // multiple) * multiple)
if (w, h) != img.size:
img = img.resize((w, h), Image.BICUBIC)
return img
def _make_tpose_canvas_like(img: Image.Image) -> Image.Image:
"""입력과 동일 해상도의 T-포즈 가이드 캔버스 생성"""
from PIL import ImageDraw
w, h = img.size
size = min(w, h)
base = Image.new("RGB", (w, h), "black")
square = Image.new("RGB", (size, size), "black")
d = ImageDraw.Draw(square)
cx, cy = size//2, int(size*0.58)
arm = int(size*0.36); leg = int(size*0.36); head = int(size*0.06)
# spine
d.line([(cx, cy-int(size*0.28)), (cx, cy+int(size*0.04))], fill="white", width=10)
# arms (T)
yA = cy-int(size*0.22)
d.line([(cx-arm, yA), (cx+arm, yA)], fill="white", width=10)
# legs
d.line([(cx, cy+int(size*0.04)), (cx-int(leg*0.65), cy+leg)], fill="white", width=10)
d.line([(cx, cy+int(size*0.04)), (cx+int(leg*0.65), cy+leg)], fill="white", width=10)
# head
d.ellipse([(cx-head, yA-int(size*0.18)-head), (cx+head, yA-int(size*0.18)+head)], outline="white", width=10)
# joints
for pt in [(cx,yA), (cx-arm,yA), (cx+arm,yA), (cx,cy), (cx,cy+int(size*0.04))]:
d.ellipse([(pt[0]-8,pt[1]-8), (pt[0]+8,pt[1]+8)], fill="white")
offx = (w - size)//2; offy = (h - size)//2
base.paste(square, (offx, offy))
return base
@spaces.GPU(duration=120)
def step1_gpu_refine(
s1_path: str,
enforce_tpose: bool, tpose_strength: float, tpose_steps: int, tpose_guidance: float,
do_redraw_flag: bool, redraw_strength: float, redraw_steps: int, redraw_guidance: float
):
"""
GPU 단계: ControlNet(OpenPose)로 T-포즈 강제 → (선택) img2img 리드로우.
- ZeroGPU 규칙: torch/diffusers 로드는 이 함수 내부에서만!
- image/control_image 해상도 동일 + 8의 배수로 강제.
"""
logs = []
if not s1_path or not Path(s1_path).exists():
raise gr.Error("STEP1 이미지가 없습니다. 먼저 STEP1(CPU)을 실행하세요.")
# 항상 먼저 로드 (UnboundLocal 방지)
img: PILImage.Image = PILImage.open(s1_path).convert("RGBA")
(OUT/"step1").mkdir(parents=True, exist_ok=True)
try:
img.save(OUT/"step1"/"dbg_00_loaded.png")
except Exception:
pass
# 안전 파라미터 클램프
tpose_strength = max(0.35, min(0.65, float(tpose_strength)))
tpose_steps = int(max(12, min(28, int(tpose_steps))))
tpose_guidance = max(5.5, min(9.0, float(tpose_guidance)))
redraw_strength = max(0.25, min(0.5, float(redraw_strength)))
redraw_steps = int(max(12, min(28, int(redraw_steps))))
redraw_guidance = max(5.0, min(9.0, float(redraw_guidance)))
# 디바이스
try:
import torch
dev = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if dev == "cuda" else torch.float32
except Exception:
dev = "cpu"; dtype = None # type: ignore
if enforce_tpose:
try:
import math, torch
from PIL import Image
from diffusers import (
ControlNetModel,
StableDiffusionControlNetImg2ImgPipeline,
DPMSolverMultistepScheduler
)
from diffusers.utils import load_image
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
dev = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if dev == "cuda" else torch.float32
# --- 입력/캔버스 준비 ---
base_rgb = _resize_to_multiple(img.convert("RGB"), multiple=8, max_side=512)
# 원본 포즈 캔버스 + T포즈 캔버스 → 약블렌드(원본 80% : T 20%)
pose_orig = _openpose_canvas_from_image(base_rgb)
pose_t = _make_tpose_canvas_like(base_rgb)
pose_canvas= _blend_pose_canvases(pose_orig, pose_t, alpha=0.20).resize(base_rgb.size)
# --- Dual ControlNet: OpenPose + Reference-Only ---
cn_pose = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=dtype
)
cn_ref = ControlNetModel.from_pretrained(
"lllyasviel/control_v11f1e_sd15_tile", torch_dtype=dtype
)
# 참고: reference-only는 tile 모델에서 ref 모드로 동작합니다.
controlnet = MultiControlNetModel([cn_pose, cn_ref])
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=dtype,
safety_checker=None, feature_extractor=None,
)
pipe = _disable_safety(pipe)
try:
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True
)
except Exception:
pass
if dev == "cuda":
pipe.to("cuda")
try:
pipe.enable_vae_slicing()
except Exception:
pass
# --- 컨디션 이미지 2개 준비 ---
control_images = [
pose_canvas, # 0: 포즈
base_rgb # 1: 레퍼런스(색/텍스처)
]
# --- 프롬프트 ---
POS = (
"clean anime illustration, full body, sharp lines, same outfit and colors as reference, "
"T-pose tendency, white studio background, bright, high-key lighting"
)
NEG = (
"glitch, collage, cutout, fragments, abstract shapes, mosaic, compression artifacts, "
"extra limbs, extra fingers, deformed, melted, noisy, text, watermark, black background"
)
# --- 파라미터 (안정값) ---
steps = int(max(16, min(28, int(tpose_steps))))
strength = float(max(0.50, min(0.65, float(tpose_strength))))
guidance = float(max(7.0, min(9.5, float(tpose_guidance))))
# controlnet 영향: [OpenPose, Reference]
cond_scales = [0.22, 0.70] # 포즈는 약하게, 레퍼런스는 강하게
start_list = [0.05, 0.00] # 포즈는 초반부터, 레퍼런스는 전 구간
end_list = [0.35, 0.80] # 포즈는 중반까지만, 레퍼런스는 오래
# --- 실행 ---
out = pipe(
prompt=POS, negative_prompt=NEG,
image=base_rgb,
control_image=control_images,
num_inference_steps=steps,
strength=strength,
guidance_scale=guidance,
controlnet_conditioning_scale=cond_scales,
control_guidance_start=start_list,
control_guidance_end=end_list,
guess_mode=True,
# reference-only 모드: tile controlnet에 적용되는 힌트 토글
# (diffusers 0.29 기준, tile은 ref-like 역할로 충분)
).images[0].convert("RGBA")
# --- 어두움 가드 + 밝기 리프트 ---
if _mean_brightness(out) < 16:
out = _lift_brightness(out, gain=1.18, gamma=0.90)
if _mean_brightness(out) < 12:
logs.append("T-포즈(DualCN) 결과가 어두워 원본 유지")
else:
img = out
try:
pose_canvas.save(OUT/"step1"/"dbg_pose_blend.png")
img.save(OUT/"step1"/"dbg_03_after_dualcn.png")
except Exception:
pass
logs.append("T-포즈(Dual-ControlNet) 적용: Pose 0.22 + Reference 0.70")
except Exception as e:
logs.append(f"T-포즈 Dual-ControlNet 실패: {e}")
# 3) 프로ンプ트 (밝고 단순한 배경 + NSFW 방지 단어)
POS = (
"T-pose tendency, full body, same outfit and colors, clean anime lines, "
"consistent scale, white studio background, bright, high-key lighting"
)
NEG = (
"black background, low-key lighting, extra limbs, extra fingers, deformed hands, "
"melted face, distorted body, nsfw, cleavage, underwear, bikini, watermark, text, noisy"
)
# 4) 아주 낮은 ControlNet 영향 + 짧은 적용 구간
# cond_scale 스케줄링: 초반 0.22 -> 후반 0.18 로 살짝 감쇠
def cond_scale_by_step(step, total):
start, end = 0.22, 0.18
t = step / max(1,total-1)
return end + (start - end) * (1.0 - t) # 선형 감소
steps = int(max(14, min(28, int(tpose_steps))))
strength = float(max(0.45, min(0.65, float(tpose_strength))))
guidance = float(max(7.0, min(9.5, float(tpose_guidance))))
# diffusers는 per-step cond_scale 스케줄이 직접 지원되지 않으므로
# 구간을 2번 호출로 나눠서 흉내낸다: [0~0.2] 구간 강하게, [0.2~0.35] 약하게
def run_pose(_img_rgb, scale, start, end, n_steps):
return pipe_pose(
prompt=POS,
negative_prompt=NEG,
image=_img_rgb,
control_image=pose_canvas,
strength=strength,
guidance_scale=guidance,
num_inference_steps=n_steps,
controlnet_conditioning_scale=scale,
control_guidance_start=[start],
control_guidance_end=[end],
guess_mode=True
).images[0].convert("RGBA")
# 1차: 초반 유도 (0.05~0.20, scale 0.22)
out_a = run_pose(base_rgb, scale=0.22, start=0.05, end=0.20, n_steps=math.ceil(steps*0.55))
# 2차: 중반 마무리 (0.20~0.35, scale 0.18) — 입력은 1차 결과
inter_rgb = _resize_to_multiple(out_a.convert("RGB"), multiple=8, max_side=512)
out_b = run_pose(inter_rgb, scale=0.18, start=0.20, end=0.35, n_steps=steps - math.ceil(steps*0.55))
out = out_b
# 6) 너무 어두우면 밝기 리프트 + 실패 시 원본 롤백
if _mean_brightness(out) < 16:
out = _lift_brightness(out, gain=1.20, gamma=0.88)
if _mean_brightness(out) < 12:
logs.append("T-포즈(SafeMode) 결과가 어두워 원본 유지")
else:
img = out
img.save(OUT/"step1"/"dbg_03_after_tpose.png")
pose_canvas.save(OUT/"step1"/"dbg_pose_safemode.png")
logs.append("T-포즈(SafeMode) 적용: 원본80%+T포즈20%, cond_scale↓, Karras DPM, 얼굴 보호")
except Exception as e:
logs.append(f"T-포즈 ControlNet 실패(SafeMode): {e}")
# ---- (옵션) 리드로우(img2img)
if do_redraw_flag:
try:
from diffusers import StableDiffusionImg2ImgPipeline
pr = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None
)
pr = _disable_safety(pr)
if dev == "cuda":
pr.to("cuda")
img_for = _resize_to_multiple(img.convert("RGB"), 8, 640)
img = pr(
prompt="clean anime illustration, sharp lines, flat colors, plain white background",
negative_prompt="glitch, mosaic, text, watermark, noisy",
image=img_for,
strength=float(max(0.30, min(0.45, float(redraw_strength)))),
guidance_scale=float(max(6.5, min(9.0, float(redraw_guidance)))),
num_inference_steps=int(max(14, min(28, int(redraw_steps))))
).images[0].convert("RGBA")
img.save(OUT/"step1"/"dbg_05_after_redraw.png")
logs.append("img2img 리드로우 적용")
except Exception as e:
logs.append(f"img2img 리드로우 실패: {e}")
# ---- 저장 & 프리뷰
out_path = _save_png(img, OUT / "step1" / "input_preprocessed.png")
try:
preview = _to_preview(img)
except Exception:
preview = img.convert("RGB")
# ✅ 반환: 갤러리(미리보기), 경로, 로그, 디버그(원본 경로 그대로 노출)
return [preview], str(out_path), "\n".join(logs), str(out_path)
# ====== (옵션) img2img 리드로우 ======
if do_redraw_flag:
try:
from diffusers import StableDiffusionImg2ImgPipeline
pipe_redraw = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=(torch.float16 if dev == "cuda" else torch.float32)
)
if dev == "cuda":
pipe_redraw.to("cuda")
img_for_redraw = _resize_to_multiple(img.convert("RGB"), multiple=8, max_side=768)
out = pipe_redraw(
prompt="clean anime illustration, sharp lines, simple solid background",
image=img_for_redraw,
strength=float(redraw_strength),
guidance_scale=float(redraw_guidance),
num_inference_steps=int(redraw_steps),
).images[0]
img = out.convert("RGBA")
logs.append("img2img 리드로우 적용")
except Exception as e:
logs.append(f"img2img 리드로우 실패: {e}")
# ====== 저장 & 갤러리 미리보기 ======
out_path = _save_png(img, OUT / "step1" / "input_preprocessed.png")
try:
preview = _to_preview(img) # 있으면 사용
except Exception:
preview = img.convert("RGB")
return [preview], str(out_path), "\n".join(logs)
# ---------------------------------
# STEP2: Spaces call (model + texture)
# ---------------------------------
def _compose_prompt(gender: str, weaponless: bool, extra: str, enforce_tpose: bool) -> str:
seg = []
if gender and gender!="auto": seg.append(gender)
if weaponless: seg += ["weaponless","no weapons"]
if enforce_tpose: seg.append("T-pose")
seg += ["anime character","clean lines","consistent style"]
if extra: seg.append(extra)
return ", ".join(seg)
@spaces.GPU(duration=120) # 요청 시 GPU 확보
def step2_generate(space_key: str, custom_repo: str, steps: int, guidance: float, seed: int,
s1_path: str, gender: str, weaponless: bool, enforce_tpose: bool,
do_texture: bool, prompt_extra: str) -> Tuple[str, str, str]:
if not s1_path or not Path(s1_path).exists(): raise gr.Error("STEP1 결과가 없습니다.")
profile = SPACES[space_key]
repo = profile["repo"] or custom_repo.strip()
if not repo: raise gr.Error("커스텀 Space를 선택한 경우 레포를 입력하세요. 예) username/space")
prompt = _compose_prompt(gender, weaponless, prompt_extra, enforce_tpose)
# 캐시 경로
ck = _cache_key(s1_path, dict(steps=steps,guidance=guidance,seed=seed,space=repo,gender=gender,weaponless=weaponless,enforce_tpose=enforce_tpose,extra=prompt_extra))
glb_cache = OUT/"step2"/f"{ck}.glb"
glb_tex_cache = OUT/"step2b"/f"{ck}.glb"
if glb_cache.exists() and (not do_texture or glb_tex_cache.exists()):
return str(glb_cache), (str(glb_tex_cache) if glb_tex_cache.exists() else ""), "cache hit"
payload = {"prompt":prompt,"image":s1_path,"steps":int(steps),"guidance":float(guidance),"seed":int(seed),"glb":str(glb_cache)}
last_err=None; glb=None
for variant in profile["variants_model"]:
try:
res = _call_space(repo, profile["api_model"], variant, payload)
glb = _pick_glb(res)
if glb: break
except Exception as e:
last_err=e; continue
if not glb: raise gr.Error(f"모델 생성 실패: {last_err}")
try:
if Path(glb).exists(): shutil.copy2(glb, glb_cache)
except Exception: pass
tex_log=""
if do_texture and profile.get("api_texture"):
payload2={"glb":str(glb_cache),"steps":int(steps),"guidance":float(guidance)}
last2=None; glb2=None
for var in profile["variants_texture"]:
try:
res = _call_space(repo, profile["api_texture"], var, payload2)
glb2=_pick_glb(res)
if glb2: break
except Exception as e:
last2=e; continue
if glb2 and Path(glb2).exists():
shutil.copy2(glb2, glb_tex_cache); tex_log="texture ok"
else:
tex_log=f"texture skip/failed: {last2}"
return str(glb_cache), (str(glb_tex_cache) if glb_tex_cache.exists() else ""), tex_log
# ---------------------------------
# STEP3: 6-view render + Blender autorig + FBX/VRM + Animator script
# ---------------------------------
def _normalize_mesh(mesh: "trimesh.Trimesh") -> "trimesh.Trimesh": # type: ignore
m=mesh.copy(); b=m.bounds; size=(b[1]-b[0]).max()
if size>0: m.apply_scale(1.0/float(size)); m.apply_translation(-m.centroid)
return m
def six_view_render(glb_path: str) -> Tuple[List[str], str, str]:
if not Path(glb_path).exists(): raise gr.Error("GLB가 없습니다.")
if PKG["trimesh"] is None or PKG["pyrender"] is None:
info = OUT/"step3"/"RENDER_INFO.txt"; info.write_text("pip install trimesh pyrender PyOpenGL\n")
return [], "", "trimesh/pyrender 미설치"
import trimesh, pyrender, numpy as np
scene = pyrender.Scene(bg_color=[0,0,0,0]); outs=[]
try:
mesh = trimesh.load(glb_path)
if isinstance(mesh, trimesh.Scene): mesh = trimesh.util.concatenate(mesh.dump())
mesh = _normalize_mesh(mesh)
node = scene.add(pyrender.Mesh.from_trimesh(mesh, smooth=True))
scene.add(pyrender.DirectionalLight(intensity=3.0))
rnd = pyrender.OffscreenRenderer(768,768)
views=[(0,0),(0,180),(0,90),(0,-90),(45,0),(-45,0)]
for i,(elev,az) in enumerate(views):
cam = pyrender.PerspectiveCamera(yfov=60*math.pi/180); cn = scene.add(cam)
r=2.2; phi=math.radians(90-elev); th=math.radians(az)
x=r*math.sin(phi)*math.cos(th); y=r*math.cos(phi); z=r*math.sin(phi)*math.sin(th)
pose = trimesh.transformations.look_at(eye=[x,y,z], target=[0,0,0], up=[0,1,0])
scene.set_pose(cn, pose); color,_ = rnd.render(scene)
p = OUT/"step3"/f"view_{i+1}.png"; Image.fromarray(color).save(p); outs.append(str(p)); scene.remove_node(cn)
rnd.delete(); scene.remove_node(node)
z = OUT/"step3"/"six_views.zip"
with zipfile.ZipFile(z,"w") as zf:
for p in outs: zf.write(p, Path(p).name)
return outs, str(z), "ok"
except Exception as e:
err = OUT/"step3"/"RENDER_ERROR.txt"; err.write_text(f"{e}\n{traceback.format_exc()}"); return [], "", f"render err: {e}"
def _write_blender_script(tmp_py: Path, src_glb: str, out_fbx: str, out_vrm: Optional[str], add_bs: bool):
tmp_py.write_text(textwrap.dedent(f"""
import bpy, os
src=r'''{src_glb}'''; outfbx=r'''{out_fbx}'''; outvrm=r'''{out_vrm or ""}'''; add={str(bool(add_bs))}
bpy.ops.wm.read_homefile(use_empty=True)
bpy.ops.import_scene.gltf(filepath=src)
meshes=[o for o in bpy.context.scene.objects if o.type=='MESH']
if not meshes: raise RuntimeError("no mesh")
obj=meshes[0]
bpy.ops.object.armature_add(enter_editmode=False, location=(0,0,0))
arm=bpy.context.active_object
bpy.ops.object.select_all(action='DESELECT'); obj.select_set(True); arm.select_set(True); bpy.context.view_layer.objects.active=arm
bpy.ops.object.parent_set(type='ARMATURE_AUTO')
if add and obj.type=='MESH':
if not obj.data.shape_keys: obj.shape_key_add(name='Basis')
s=obj.shape_key_add(name='Smile'); a=obj.shape_key_add(name='Angry'); u=obj.shape_key_add(name='Surprised')
for v in obj.data.vertices:
s.data[v.index].co.y+=0.01; a.data[v.index].co.x-=0.01; u.data[v.index].co.z+=0.01
bpy.ops.export_scene.fbx(filepath=outfbx, use_active_collection=False, apply_unit_scale=True, bake_space_transform=True, object_types={{'ARMATURE','MESH'}}, add_leaf_bones=False, path_mode='AUTO')
if outvrm:
try: bpy.ops.export_scene.vrm(filepath=outvrm)
except Exception as e: print("VRM export failed:", e)
"""))
def _run_blender(glb: str, add_bs: bool, do_vrm: bool) -> Tuple[str,str,str]:
blender = os.getenv("BLENDER_PATH","blender")
outfbx = OUT/"exports"/"character_unity.fbx"
outvrm = OUT/"exports"/"character.vrm" if do_vrm else None
script = Path(tempfile.gettempdir())/f"rig_{int(time.time())}.py"
_write_blender_script(script, glb, str(outfbx), (str(outvrm) if outvrm else ""), add_bs)
try:
subprocess.run([blender,"--background","--python",str(script)], check=True)
return str(outfbx), (str(outvrm) if outvrm and Path(outvrm).exists() else ""), "ok"
except Exception as e:
return "", "", f"blender err: {e}"
finally:
try: script.unlink(missing_ok=True)
except Exception: pass
def _write_unity_animator_cs() -> str:
cs = OUT/"exports"/"CreateCharacterAnimator.cs"
cs.write_text(textwrap.dedent(r'''
using UnityEditor; using UnityEngine; using UnityEditor.Animations;
public class CreateCharacterAnimator : MonoBehaviour {
[MenuItem("Tools/Generate Character Animator")]
static void Generate() {
var ctrl = AnimatorController.CreateAnimatorControllerAtPath("Assets/character_controller.controller");
var root = ctrl.layers[0].stateMachine;
var idle = ctrl.AddMotion(new AnimationClip()); idle.name="Idle"; var s=root.AddState("Idle"); s.motion=idle;
var sm = ctrl.AddMotion(new AnimationClip()); sm.name="Smile"; var stS=root.AddState("Smile"); stS.motion=sm;
var ag = ctrl.AddMotion(new AnimationClip()); ag.name="Angry"; var stA=root.AddState("Angry"); stA.motion=ag;
var su = ctrl.AddMotion(new AnimationClip()); su.name="Surprised"; var stU=root.AddState("Surprised"); stU.motion=su;
ctrl.AddParameter("Smile", AnimatorControllerParameterType.Trigger);
ctrl.AddParameter("Angry", AnimatorControllerParameterType.Trigger);
ctrl.AddParameter("Surprised", AnimatorControllerParameterType.Trigger);
var t1 = s.AddTransition(stS); t1.AddCondition(AnimatorConditionMode.If,0,"Smile"); t1.hasExitTime=false;
var t2 = s.AddTransition(stA); t2.AddCondition(AnimatorConditionMode.If,0,"Angry"); t2.hasExitTime=false;
var t3 = s.AddTransition(stU); t3.AddCondition(AnimatorConditionMode.If,0,"Surprised"); t3.hasExitTime=false;
Debug.Log("Animator created at Assets/character_controller.controller");
}
}'''), encoding="utf-8")
return str(cs)
def step3_all(glb_model: str, glb_tex: str, add_bs: bool, do_vrm: bool) -> Tuple[List[Tuple[str,str]], str, str, str, str]:
glb = glb_tex if glb_tex and Path(glb_tex).exists() else glb_model
if not glb or not Path(glb).exists(): raise gr.Error("GLB가 없습니다. STEP2를 먼저 실행하세요.")
views, zip_path, rlog = six_view_render(glb)
fbx, vrm, blog = _run_blender(glb, add_bs, do_vrm)
cs = _write_unity_animator_cs()
gallery=[(p, Path(p).name) for p in views]
log = "\n".join(filter(None, [rlog, blog]))
return gallery, (zip_path if zip_path else ""), (fbx if fbx else ""), (vrm if vrm else ""), cs
# ---------------------------------
# Gradio UI
# ---------------------------------
with gr.Blocks() as demo:
gr.Markdown("## Pixel→(rembg / **Weaponless** / **T-Pose** / Redraw)→Hunyuan3D(genshin)→**6-View**→AutoRig(FBX/VRM)+BlendShapes→Unity Animator")
with gr.Row():
space_sel = gr.Dropdown(choices=list(SPACES.keys()), value="genshin (main)", label="Space 선택")
custom_repo = gr.Textbox(label="커스텀 Space (선택, <custom>일 때)", placeholder="username/space-name")
steps = gr.Slider(5, 100, value=28, step=1, label="steps")
guidance = gr.Slider(1.0, 20.0, value=7.5, step=0.5, label="guidance")
seed = gr.Number(value=0, precision=0, label="seed (0=랜덤)")
with gr.Tab("STEP 1 — 전처리"):
with gr.Row():
s1_img = gr.Image(type="pil", label="입력 이미지")
s1_gallery = gr.Gallery(label="전처리 미리보기", columns=3, height=220)
with gr.Row():
keep_rembg = gr.Checkbox(value=True, label="배경 제거(rembg)")
do_weaponless = gr.Checkbox(value=True, label="무기 제거 (DINO+SAM+LaMa)")
weapon_terms = gr.Textbox(value="weapon, sword, spear, lance, polearm, bow, gun, axe, dagger", label="무기 키워드")
enforce_tpose = gr.Checkbox(value=True, label="T-포즈 강제 (ControlNet/OpenPose)")
with gr.Row():
tpose_strength = gr.Slider(0.1, 0.9, value=0.6, step=0.05, label="T-포즈 강도")
tpose_steps = gr.Slider(5, 50, value=25, step=1, label="T-포즈 steps")
tpose_guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="T-포즈 guidance")
with gr.Row():
do_redraw_flag = gr.Checkbox(value=False, label="리드로우(img2img)")
redraw_strength = gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="리드로우 강도")
redraw_steps = gr.Slider(5, 50, value=25, step=1, label="리드로우 steps")
redraw_guidance = gr.Slider(1.0, 15.0, value=7.0, step=0.5, label="리드로우 guidance")
with gr.Row():
gender = gr.Dropdown(choices=["auto","female","male","androgynous"], value="auto", label="성별")
extra = gr.Textbox(value="", label="프롬프트 추가(선택)")
s1_btn = gr.Button("STEP1 실행", variant="primary")
s1_path = gr.Textbox(label="STEP1 결과 경로", interactive=False)
s1_log = gr.Textbox(label="STEP1 로그", interactive=False)
dbg_pre = gr.Image(label="전처리 이미지 확인(파일 그대로)", type="filepath") # ✅ 새로 추가
# CPU → (then) GPU 체인. 반환 4개: [미리보기], 경로, 로그, 디버그 파일경로
s1_btn.click(
step1_cpu,
inputs=[s1_img, keep_rembg, do_weaponless, weapon_terms],
outputs=[s1_gallery, s1_path, s1_log, dbg_pre]
).then(
step1_gpu_refine,
inputs=[s1_path, enforce_tpose, tpose_strength, tpose_steps, tpose_guidance,
do_redraw_flag, redraw_strength, redraw_steps, redraw_guidance],
outputs=[s1_gallery, s1_path, s1_log, dbg_pre]
)
with gr.Tab("STEP 2 — 3D 생성 (모델/텍스처)"):
do_texture = gr.Checkbox(value=True, label="텍스처 단계 실행(지원 시)")
s2_btn = gr.Button("STEP2 실행")
glb_out = gr.Textbox(label="GLB(모델)", interactive=False)
glb_tex_out = gr.Textbox(label="GLB(텍스처)", interactive=False)
s2_log = gr.Textbox(label="STEP2 로그", interactive=False)
s2_btn.click(step2_generate,
inputs=[space_sel, custom_repo, steps, guidance, seed, s1_path, gender, do_weaponless, enforce_tpose, do_texture, extra],
outputs=[glb_out, glb_tex_out, s2_log])
with gr.Tab("STEP 3 — 6뷰/오토리깅/Unity"):
add_bs = gr.Checkbox(value=True, label="기본 BlendShapes(Smile/Angry/Surprised)")
do_vrm = gr.Checkbox(value=False, label="VRM 내보내기(애드온 필요)")
s3_btn = gr.Button("STEP3 실행")
s3_gallery = gr.Gallery(label="6-View Render", columns=3, height=220)
s3_zip = gr.File(label="6뷰 ZIP")
s3_fbx = gr.File(label="Unity FBX")
s3_vrm = gr.File(label="VRM(옵션)")
s3_cs = gr.File(label="Unity Animator C#")
s3_btn.click(step3_all,
inputs=[glb_out, glb_tex_out, add_bs, do_vrm],
outputs=[s3_gallery, s3_zip, s3_fbx, s3_vrm, s3_cs])
# ---- SSR 끄기 & queue 인자 호환
if __name__ == "__main__":
# 옵션: 캐시 경로 명시 (Transformers 이주 로그 억제)
os.environ.setdefault("HF_HOME", str((ROOT/".hf").resolve()))
os.environ.setdefault("TRANSFORMERS_CACHE", str((ROOT/".hf"/"transformers").resolve()))
demo.queue() # no concurrency_count (버전 호환)
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT","7860")), ssr_mode=False, share=False)
|