Spaces:
Running
Running
File size: 16,063 Bytes
ca2c89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import spacy
from collections import Counter
import networkx as nx
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from utils.model_loader import load_spacy
from utils.helpers import fig_to_html, df_to_html_table
def named_entity_handler(text_input):
"""Show named entity recognition capabilities."""
output_html = []
# Add result area container
output_html.append('<div class="result-area">')
output_html.append('<h2 class="task-header">Named Entity Recognition</h2>')
output_html.append("""
<div class="alert alert-info">
<i class="fas fa-info-circle"></i>
Named Entity Recognition identifies and classifies key information in text into pre-defined categories such as person names, organizations, locations, etc.
</div>
""")
# Model info
output_html.append("""
<div class="alert alert-info">
<h4><i class="fas fa-tools"></i> Models Used:</h4>
<ul>
<li><b>dslim/bert-base-NER</b> - BERT-based Named Entity Recognition model</li>
<li><b>spaCy en_core_web_sm</b> - Statistical NLP model for additional analysis</li>
<li><b>Entity Types</b> - Identifies people, organizations, locations, and miscellaneous entities</li>
</ul>
</div>
""")
try:
# Load BERT NER model
try:
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
except Exception as model_err:
output_html.append(f"""
<div class="alert alert-warning">
<h4>Model Loading Issue</h4>
<p>Could not load BERT NER model: {str(model_err)}</p>
<p>Falling back to spaCy model...</p>
</div>
""")
# Fallback to spaCy
nlp = load_spacy()
doc = nlp(text_input)
bert_entities = []
else:
# Process with BERT NER
bert_entities = ner_pipeline(text_input)
# Also load spaCy for additional analysis
nlp = load_spacy()
doc = nlp(text_input)
# Combine entities from both models
all_entities = []
# Add BERT entities
for entity in bert_entities:
all_entities.append({
'text': entity['word'].replace('##', ''),
'label': entity['entity_group'],
'confidence': entity['score'],
'start': entity['start'],
'end': entity['end'],
'source': 'BERT'
})
# Add spaCy entities
for ent in doc.ents:
all_entities.append({
'text': ent.text,
'label': ent.label_,
'confidence': 1.0, # spaCy doesn't provide confidence scores
'start': ent.start_char,
'end': ent.end_char,
'source': 'spaCy'
})
# If no entities were found
if len(all_entities) == 0:
output_html.append("""
<div class="alert alert-warning">
<h3>No Named Entities Found</h3>
<p>The model couldn't identify any named entities in the provided text. Try a different text that contains names, places, organizations, dates, etc.</p>
</div>
""")
else:
# Display identified entities in text
output_html.append('<h3 class="task-subheader">Identified Entities</h3>')
# Color scheme for different entity types (BERT + spaCy)
colors = {
# BERT NER labels
'PER': '#e6194B', # Person - Red
'ORG': '#3cb44b', # Organization - Green
'LOC': '#4363d8', # Location - Blue
'MISC': '#f58231', # Miscellaneous - Orange
# spaCy labels
'PERSON': '#e6194B', # Red
'ORG': '#3cb44b', # Green
'GPE': '#4363d8', # Blue (locations/geopolitical)
'LOC': '#42d4f4', # Cyan (non-GPE locations)
'FACILITY': '#f58231', # Orange
'PRODUCT': '#911eb4', # Purple
'EVENT': '#f032e6', # Magenta
'WORK_OF_ART': '#fabebe', # Pink
'LAW': '#008080', # Teal
'DATE': '#9A6324', # Brown
'TIME': '#800000', # Maroon
'PERCENT': '#808000', # Olive
'MONEY': '#000075', # Navy
'QUANTITY': '#000000', # Black
'CARDINAL': '#a9a9a9', # Dark Gray
'ORDINAL': '#808080', # Gray
'NORP': '#469990' # Nationality/Religious/Political
}
# Remove duplicates and sort entities by position
unique_entities = []
seen_spans = set()
for entity in all_entities:
span = (entity['start'], entity['end'])
if span not in seen_spans:
unique_entities.append(entity)
seen_spans.add(span)
# Sort by start position
sorted_ents = sorted(unique_entities, key=lambda x: x['start'])
# Create HTML with highlighted entities
html_text = text_input
offset = 0
for entity in sorted_ents:
# Get the appropriate color (default to gray if not found)
color = colors.get(entity['label'], '#a9a9a9')
# Create the HTML span with tooltip including confidence and source
start = entity['start'] + offset
end = entity['end'] + offset
confidence_text = f" (Confidence: {entity['confidence']:.2f})" if entity['confidence'] < 1.0 else ""
tooltip = f"{entity['label']} - {entity['source']}{confidence_text}"
entity_html = f'<span class="entity-badge" style="background-color: {color}; color: white; border: 2px solid #fff; box-shadow: 0 2px 4px rgba(0,0,0,0.3);" title="{tooltip}"><strong>{entity["text"]}</strong> <span style="font-size: 0.8em;">({entity["label"]}) ({entity["source"]})</span></span>'
# Replace the entity text with the highlighted version
html_text = html_text[:start] + entity_html + html_text[end:]
# Update offset for subsequent entities
offset += len(entity_html) - len(entity['text'])
# Display the highlighted text
output_html.append(f'<div class="card"><div class="card-body"><div class="entity-text-container">{html_text}</div></div></div>')
# Entity count and distribution
output_html.append('<h3 class="task-subheader">Entity Distribution</h3>')
# Create a DataFrame for the entities
entities_data = []
for entity in unique_entities:
entities_data.append({
'Entity': entity['text'],
'Type': entity['label'],
'Source': entity['source'],
'Confidence': f"{entity['confidence']:.2f}" if entity['confidence'] < 1.0 else "1.00"
})
entity_df = pd.DataFrame(entities_data)
# Calculate entity type distribution
entity_counts = Counter([entity['label'] for entity in unique_entities])
# Create bar chart for entity type distribution
fig = plt.figure(figsize=(12, 8))
bars = plt.bar(entity_counts.keys(), entity_counts.values(),
color=[colors.get(k, '#a9a9a9') for k in entity_counts.keys()])
plt.xlabel('Entity Type')
plt.ylabel('Count')
plt.title('Entity Type Distribution (BERT + spaCy)')
plt.xticks(rotation=45, ha='right')
# Add count labels on top of bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.1,
f'{int(height)}',
ha='center', va='bottom')
plt.tight_layout()
# Chart section
output_html.append('<section class="entity-chart-section">')
output_html.append('<div class="chart-container">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
output_html.append('</section>')
# Table section
output_html.append('<section class="entity-table-container">')
output_html.append('<h4>Entities Found</h4>')
output_html.append(df_to_html_table(entity_df))
output_html.append('</section>')
# Entity relationship visualization (for texts with multiple entities)
if len(doc.ents) > 1:
output_html.append('<h3 class="task-subheader">Entity Relationships</h3>')
# Create a network graph of entities that appear in the same sentence
G = nx.Graph()
# Add nodes for each unique entity
for ent in doc.ents:
G.add_node(ent.text, type=ent.label_)
# Add edges between entities that appear in the same sentence
for sent in doc.sents:
sent_ents = [ent for ent in doc.ents if sent.start <= ent.start < sent.end]
for i, ent1 in enumerate(sent_ents):
for ent2 in sent_ents[i+1:]:
if G.has_edge(ent1.text, ent2.text):
G[ent1.text][ent2.text]['weight'] += 1
else:
G.add_edge(ent1.text, ent2.text, weight=1)
# Only show relationship visualization if there are edges
if G.number_of_edges() > 0:
# Create a network visualization
plt.figure(figsize=(10, 8))
# Node colors based on entity type
node_colors = [colors.get(G.nodes[node]['type'], '#a9a9a9') for node in G.nodes()]
# Position nodes using spring layout
pos = nx.spring_layout(G)
# Draw the network
nx.draw_networkx_nodes(G, pos, node_size=300, node_color=node_colors, alpha=0.8)
nx.draw_networkx_edges(G, pos, width=1.5, alpha=0.7, edge_color='#888888')
nx.draw_networkx_labels(G, pos, font_size=10, font_weight='bold')
plt.title('Entity Co-occurrence Network')
plt.axis('off')
plt.tight_layout()
output_html.append('<div class="alert alert-light"><p class="mb-0">This visualization shows entities that appear in the same sentences:</p></div>')
output_html.append(fig_to_html(plt.gcf()))
plt.close()
else:
output_html.append('<p>No entity relationships detected in the text.</p>')
# Legend for entity types
output_html.append('<h3 class="task-subheader">Entity Type Legend</h3>')
entity_descriptions = {
'PERSON': 'People, including fictional',
'ORG': 'Organizations, companies, institutions',
'GPE': 'Geopolitical entities (countries, cities, states)',
'LOC': 'Non-GPE locations (mountain ranges, water bodies)',
'FACILITY': 'Buildings, airports, highways, bridges',
'PRODUCT': 'Products, objects, vehicles, foods',
'EVENT': 'Hurricanes, battles, wars, sports events',
'WORK_OF_ART': 'Titles of books, songs, etc.',
'LAW': 'Named documents made into laws',
'DATE': 'Absolute or relative dates',
'TIME': 'Times smaller than a day',
'PERCENT': 'Percentage',
'MONEY': 'Monetary values',
'QUANTITY': 'Measurements',
'CARDINAL': 'Numerals not falling under another type',
'ORDINAL': 'Ordinal numbers',
'NORP': 'Nationalities, religious or political groups'
}
output_html.append('<div class="row">')
for entity, color in colors.items():
if entity in entity_counts:
output_html.append(f"""
<div class="col-md-6 mb-2">
<div class="card">
<div class="card-body p-2">
<span class="badge me-2" style="background-color: {color}; color: white;">{entity}</span>
<small>{entity_descriptions.get(entity, '')}</small>
</div>
</div>
</div>
""")
output_html.append('</div>') # Close row
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h3>Error</h3>
<p>Failed to process named entities: {str(e)}</p>
</div>
""")
# About NER section
output_html.append("""
<div class="card mt-4">
<div class="card-header">
<h4 class="mb-0">
<i class="fas fa-info-circle"></i>
About Named Entity Recognition
</h4>
</div>
<div class="card-body">
<h5>What is Named Entity Recognition?</h5>
<p>Named Entity Recognition (NER) is an NLP technique that automatically identifies and classifies named entities
in text into predefined categories. These entities are typically proper nouns such as people, organizations,
locations, expressions of times, quantities, monetary values, and percentages.</p>
<h5>Applications of NER:</h5>
<ul>
<li><b>Information Extraction</b> - Identifying key information from large volumes of text</li>
<li><b>Question Answering</b> - Helping systems understand what entities questions are referring to</li>
<li><b>Document Classification</b> - Using entity types and frequencies to categorize documents</li>
<li><b>Customer Service</b> - Identifying product names, issue types, and user information in support tickets</li>
<li><b>Content Recommendation</b> - Using entities to find related content</li>
</ul>
</div>
</div>
""")
output_html.append('</div>') # Close result-area div
return '\n'.join(output_html)
|