Spaces:
Running
Running
File size: 23,005 Bytes
55a9e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from transformers import pipeline
import nltk
from collections import Counter
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from utils.model_loader import load_qa_pipeline
from utils.helpers import fig_to_html, df_to_html_table
def question_answering_handler(context_text, question, answer_type="extractive", confidence_threshold=0.5):
"""Show question answering capabilities with comprehensive analysis."""
output_html = []
# Add result area container
output_html.append('<div class="result-area">')
output_html.append('<h2 class="task-header">Question Answering System</h2>')
output_html.append("""
<div class="alert alert-info">
<i class="fas fa-info-circle"></i>
Question Answering (QA) systems extract or generate answers to questions based on a given context or knowledge base.
This system can handle both extractive (finding answers in text) and abstractive (generating new answers) approaches.
</div>
""")
# Model info
output_html.append("""
<div class="alert alert-info">
<h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>
<ul>
<li><b>RoBERTa-SQuAD2</b> - Fine-tuned transformer model for extractive QA (F1: ~83.7 on SQuAD 2.0)</li>
<li><b>BERT-based QA</b> - Bidirectional encoder representations for understanding context</li>
<li><b>TF-IDF Similarity</b> - Traditional approach for finding relevant text spans</li>
<li><b>Confidence Scoring</b> - Model uncertainty estimation for answer reliability</li>
</ul>
</div>
""")
try:
# Validate inputs
if not context_text or not context_text.strip():
output_html.append('<div class="alert alert-warning">β οΈ Please provide a context text for question answering.</div>')
output_html.append('</div>')
return "\n".join(output_html)
if not question or not question.strip():
output_html.append('<div class="alert alert-warning">β οΈ Please provide a question to answer.</div>')
output_html.append('</div>')
return "\n".join(output_html)
# Display input information
output_html.append('<h3 class="task-subheader">Input Analysis</h3>')
context_stats = {
"Context Length": len(context_text),
"Word Count": len(context_text.split()),
"Sentence Count": len(nltk.sent_tokenize(context_text)),
"Question Length": len(question),
"Question Words": len(question.split())
}
stats_df = pd.DataFrame(list(context_stats.items()), columns=['Metric', 'Value'])
output_html.append('<h4>Input Statistics</h4>')
output_html.append(df_to_html_table(stats_df))
# Question Analysis
output_html.append('<h3 class="task-subheader">Question Analysis</h3>')
# Classify question type
question_lower = question.lower().strip()
question_type = classify_question_type(question_lower)
output_html.append(f"""
<div class="card">
<div class="card-header">
<h4 class="mb-0">Question Classification</h4>
</div>
<div class="card-body">
<p><strong>Question:</strong> {question}</p>
<p><strong>Type:</strong> {question_type['type']}</p>
<p><strong>Expected Answer:</strong> {question_type['expected']}</p>
<p><strong>Keywords:</strong> {', '.join(question_type['keywords'])}</p>
</div>
</div>
""")
# Extractive Question Answering using Transformer
output_html.append('<h3 class="task-subheader">Transformer-based Answer Extraction</h3>')
try:
qa_pipeline = load_qa_pipeline()
# Get answer from the model
result = qa_pipeline(question=question, context=context_text)
answer = result['answer']
confidence = result['score']
start_pos = result['start']
end_pos = result['end']
# Create confidence visualization
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
# Confidence bar
colors = ['red' if confidence < 0.3 else 'orange' if confidence < 0.7 else 'green']
bars = ax.barh(['Confidence'], [confidence], color=colors[0])
ax.set_xlim(0, 1)
ax.set_xlabel('Confidence Score')
ax.set_title('Answer Confidence')
# Add confidence threshold line
ax.axvline(x=confidence_threshold, color='red', linestyle='--', label=f'Threshold ({confidence_threshold})')
ax.legend()
# Add value labels
for bar in bars:
width = bar.get_width()
ax.text(width/2, bar.get_y() + bar.get_height()/2,
f'{width:.3f}', ha='center', va='center', fontweight='bold')
plt.tight_layout()
output_html.append(fig_to_html(fig))
plt.close()
# Display answer with context highlighting
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
output_html.append(f"""
<div class="card" style="border-color: {confidence_color};">
<div class="card-header" style="background-color: {confidence_color}22;">
<h4 class="mb-0">π Extracted Answer</h4>
</div>
<div class="card-body">
<div class="alert alert-light">
<strong>Answer:</strong> <span class="badge bg-warning text-dark fs-6">{answer}</span>
</div>
<p><strong>Confidence:</strong> {confidence:.3f} ({confidence_status})</p>
<p><strong>Position in Text:</strong> Characters {start_pos}-{end_pos}</p>
</div>
</div>
""")
# Show context with answer highlighted
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
output_html.append(f"""
<div class="card">
<div class="card-header">
<h4 class="mb-0">π Context with Highlighted Answer</h4>
</div>
<div class="card-body">
<div style="line-height: 1.6; border: 1px solid #ddd; padding: 1rem; border-radius: 5px;">
{highlighted_context}
</div>
</div>
</div>
""")
except Exception as e:
output_html.append(f'<div class="alert alert-danger">β Error in transformer QA: {str(e)}</div>')
# Alternative: TF-IDF based answer extraction
output_html.append('<h3 class="task-subheader">TF-IDF Based Answer Extraction</h3>')
try:
tfidf_answer = extract_answer_tfidf(context_text, question)
output_html.append(f"""
<div class="alert alert-success">
<h4>π TF-IDF Based Answer</h4>
<div class="alert alert-light">
<strong>Most Relevant Sentence:</strong> {tfidf_answer['sentence']}
</div>
<p><strong>Similarity Score:</strong> {tfidf_answer['score']:.3f}</p>
<p><strong>Method:</strong> Cosine similarity between question and context sentences using TF-IDF vectors</p>
</div>
""")
except Exception as e:
output_html.append(f'<div class="alert alert-danger">β Error in TF-IDF QA: {str(e)}</div>')
# Answer Quality Assessment
output_html.append('<h3 class="task-subheader">Answer Quality Assessment</h3>')
if 'confidence' in locals():
quality_metrics = assess_answer_quality(question, answer, confidence, context_text)
# Create quality assessment visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Quality metrics radar chart
categories = list(quality_metrics.keys())
values = list(quality_metrics.values())
ax1.bar(categories, values, color=['#4CAF50', '#2196F3', '#FF9800', '#9C27B0'])
ax1.set_ylim(0, 1)
ax1.set_title('Answer Quality Metrics')
ax1.set_ylabel('Score')
plt.setp(ax1.get_xticklabels(), rotation=45, ha='right')
# Overall quality score
overall_score = sum(values) / len(values)
quality_label = "Excellent" if overall_score >= 0.8 else "Good" if overall_score >= 0.6 else "Fair" if overall_score >= 0.4 else "Poor"
ax2.pie([overall_score, 1-overall_score], labels=[f'{quality_label}\n({overall_score:.2f})', 'Room for Improvement'],
colors=['#4CAF50', '#E0E0E0'], startangle=90)
ax2.set_title('Overall Answer Quality')
plt.tight_layout()
output_html.append(fig_to_html(fig))
plt.close()
# Quality metrics table
quality_df = pd.DataFrame([
{'Metric': 'Confidence', 'Score': f"{quality_metrics['Confidence']:.3f}", 'Description': 'Model confidence in the answer'},
{'Metric': 'Relevance', 'Score': f"{quality_metrics['Relevance']:.3f}", 'Description': 'Semantic similarity to question'},
{'Metric': 'Completeness', 'Score': f"{quality_metrics['Completeness']:.3f}", 'Description': 'Answer length appropriateness'},
{'Metric': 'Context Match', 'Score': f"{quality_metrics['Context_Match']:.3f}", 'Description': 'How well answer fits context'}
])
output_html.append('<h4>Quality Assessment Details</h4>')
output_html.append(df_to_html_table(quality_df))
# Question-Answer Pairs Suggestions
output_html.append('<h3 class="task-subheader">Suggested Follow-up Questions</h3>')
try:
suggested_questions = generate_followup_questions(context_text, question, answer if 'answer' in locals() else "")
output_html.append('<div class="alert alert-warning">')
output_html.append('<h4>π‘ Follow-up Questions:</h4>')
output_html.append('<ul>')
for i, q in enumerate(suggested_questions, 1):
output_html.append(f'<li><strong>Q{i}:</strong> {q}</li>')
output_html.append('</ul>')
output_html.append('</div>')
except Exception as e:
output_html.append(f'<div class="alert alert-danger">β Error generating suggestions: {str(e)}</div>')
except Exception as e:
output_html.append(f'<div class="alert alert-danger">β Unexpected error: {str(e)}</div>')
output_html.append('</div>')
# Add About section at the end
output_html.append(get_about_section())
return "\n".join(output_html)
def classify_question_type(question):
"""Classify the type of question and expected answer format."""
question = question.lower().strip()
# Question word patterns
patterns = {
'what': {'type': 'Definition/Fact', 'expected': 'Entity, concept, or description'},
'who': {'type': 'Person', 'expected': 'Person name or group'},
'when': {'type': 'Time', 'expected': 'Date, time, or temporal expression'},
'where': {'type': 'Location', 'expected': 'Place, location, or spatial reference'},
'why': {'type': 'Reason/Cause', 'expected': 'Explanation or causal relationship'},
'how': {'type': 'Method/Process', 'expected': 'Process, method, or manner'},
'which': {'type': 'Selection', 'expected': 'Specific choice from options'},
'how much': {'type': 'Quantity', 'expected': 'Numerical amount or quantity'},
'how many': {'type': 'Count', 'expected': 'Numerical count'},
'is': {'type': 'Yes/No', 'expected': 'Boolean answer'},
'are': {'type': 'Yes/No', 'expected': 'Boolean answer'},
'can': {'type': 'Ability/Possibility', 'expected': 'Yes/No with explanation'},
'will': {'type': 'Future/Prediction', 'expected': 'Future state or prediction'},
'did': {'type': 'Past Action', 'expected': 'Yes/No about past events'}
}
# Extract keywords from question
words = question.split()
keywords = [word for word in words if len(word) > 2 and word not in ['the', 'and', 'but', 'for']]
# Determine question type
for pattern, info in patterns.items():
if question.startswith(pattern):
return {
'type': info['type'],
'expected': info['expected'],
'keywords': keywords[:5] # Top 5 keywords
}
# Default classification
return {
'type': 'General',
'expected': 'Text span or explanation',
'keywords': keywords[:5]
}
def extract_answer_tfidf(context, question):
"""Extract answer using TF-IDF similarity."""
# Split context into sentences
sentences = nltk.sent_tokenize(context)
if len(sentences) == 0:
return {'sentence': 'No sentences found', 'score': 0.0}
# Create TF-IDF vectors
vectorizer = TfidfVectorizer(stop_words='english', lowercase=True)
# Combine question with sentences for vectorization
texts = [question] + sentences
tfidf_matrix = vectorizer.fit_transform(texts)
# Calculate cosine similarity between question and each sentence
question_vector = tfidf_matrix[0:1]
sentence_vectors = tfidf_matrix[1:]
similarities = cosine_similarity(question_vector, sentence_vectors).flatten()
# Find the most similar sentence
best_idx = np.argmax(similarities)
best_sentence = sentences[best_idx]
best_score = similarities[best_idx]
return {
'sentence': best_sentence,
'score': best_score
}
def highlight_answer_in_context(context, start_pos, end_pos):
"""Highlight the answer span in the context."""
before = context[:start_pos]
answer = context[start_pos:end_pos]
after = context[end_pos:]
highlighted = f'{before}<mark style="background-color: #FFEB3B; padding: 2px 4px; border-radius: 3px; font-weight: bold;">{answer}</mark>{after}'
return highlighted
def assess_answer_quality(question, answer, confidence, context):
"""Assess the quality of the extracted answer."""
metrics = {}
# Confidence score (from model)
metrics['Confidence'] = confidence
# Relevance (simple keyword overlap)
question_words = set(question.lower().split())
answer_words = set(answer.lower().split())
overlap = len(question_words.intersection(answer_words))
metrics['Relevance'] = min(overlap / max(len(question_words), 1), 1.0)
# Completeness (answer length appropriateness)
answer_length = len(answer.split())
if answer_length == 0:
metrics['Completeness'] = 0.0
elif answer_length < 3:
metrics['Completeness'] = 0.6
elif answer_length <= 20:
metrics['Completeness'] = 1.0
else:
metrics['Completeness'] = 0.8 # Very long answers might be too verbose
# Context match (how well the answer fits in context)
answer_in_context = answer.lower() in context.lower()
metrics['Context_Match'] = 1.0 if answer_in_context else 0.5
return metrics
def generate_followup_questions(context, original_question, answer):
"""Generate relevant follow-up questions based on the context and answer."""
suggestions = []
# Extract key entities and concepts from context
words = context.split()
# Template-based question generation
templates = [
f"What else can you tell me about {answer}?",
"Can you provide more details about this topic?",
"What are the implications of this information?",
"How does this relate to other concepts mentioned?",
"What evidence supports this answer?"
]
# Add context-specific questions
if "when" not in original_question.lower():
suggestions.append("When did this happen?")
if "where" not in original_question.lower():
suggestions.append("Where did this take place?")
if "why" not in original_question.lower():
suggestions.append("Why is this significant?")
if "how" not in original_question.lower():
suggestions.append("How does this work?")
# Combine and limit suggestions
all_suggestions = templates + suggestions
return all_suggestions[:5] # Return top 5 suggestions
def qa_api_handler(context, question):
"""API handler for question answering that returns structured data."""
try:
qa_pipeline = load_qa_pipeline()
result = qa_pipeline(question=question, context=context)
return {
"answer": result['answer'],
"confidence": result['score'],
"start_position": result['start'],
"end_position": result['end'],
"success": True,
"error": None
}
except Exception as e:
return {
"answer": "",
"confidence": 0.0,
"start_position": 0,
"end_position": 0,
"success": False,
"error": str(e)
}
def process_question_with_context(context_text, question):
"""Process a question with the given context and return a formatted result."""
if not context_text or not context_text.strip():
return {
"success": False,
"error": "No context text provided",
"html": '<div class="alert alert-warning">β οΈ No context text provided.</div>'
}
if not question or not question.strip():
return {
"success": False,
"error": "No question provided",
"html": '<div class="alert alert-warning">β οΈ Please enter a question.</div>'
}
try:
qa_pipeline = load_qa_pipeline()
result = qa_pipeline(question=question, context=context_text)
answer = result['answer']
confidence = result['score']
start_pos = result['start']
end_pos = result['end']
# Determine confidence level
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
# Highlight answer in context
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
# Create formatted HTML result
html_result = f"""
<div class="card">
<div class="card-header">
<h5 class="mb-0">π Answer Found!</h5>
</div>
<div class="card-body">
<div class="alert alert-light">
<p><strong>Question:</strong> {question}</p>
<p><strong>Answer:</strong> <span class="badge bg-warning text-dark fs-6">{answer}</span></p>
<p><strong>Confidence:</strong> {confidence:.3f} ({confidence_status})</p>
</div>
<div class="alert alert-light">
<h6>π Context with Highlighted Answer:</h6>
<div style="line-height: 1.6; font-size: 0.9rem; max-height: 200px; overflow-y: auto;">
{highlighted_context}
</div>
</div>
<div class="alert alert-info">
<strong>Quality Assessment:</strong>
<ul class="mb-0">
<li>Confidence: {confidence_status} ({confidence:.1%})</li>
<li>Answer found at position: {start_pos}-{end_pos}</li>
<li>Answer length: {len(answer.split())} words</li>
</ul>
</div>
</div>
</div>
"""
return {
"success": True,
"answer": answer,
"confidence": confidence,
"html": html_result
}
except Exception as e:
error_html = f'<div class="alert alert-danger">β Error processing question: {str(e)}</div>'
return {
"success": False,
"error": str(e),
"html": error_html
}
def get_about_section():
"""Generate the About Question Answering section"""
return """
<div class="card mt-4">
<div class="card-header bg-primary text-white">
<h4><i class="fas fa-info-circle me-2"></i>About Question Answering</h4>
</div>
<div class="card-body">
<h5>What is Question Answering?</h5>
<p>Question Answering (QA) is an NLP technique that automatically finds answers to questions posed in natural language. It involves understanding both the question and the context to extract or generate relevant answers.</p>
<h5>Applications of Question Answering:</h5>
<ul>
<li><strong>Customer Support</strong> - Automatically answering customer queries from knowledge bases</li>
<li><strong>Educational Systems</strong> - Helping students find answers in textbooks and materials</li>
<li><strong>Information Retrieval</strong> - Extracting specific information from large documents</li>
<li><strong>Virtual Assistants</strong> - Powering AI assistants like Siri, Alexa, and Google Assistant</li>
<li><strong>Research Tools</strong> - Helping researchers quickly find relevant information in papers</li>
<li><strong>Legal Analysis</strong> - Finding relevant clauses and information in legal documents</li>
</ul>
<h5>How It Works:</h5>
<p>Our system uses transformer-based models to understand questions and find relevant answers in the provided context. It analyzes question types, extracts key information, and provides confidence scores for the answers found.</p>
</div>
</div>
"""
|