Spaces:
Running
Running
File size: 25,087 Bytes
ca2c89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import nltk
from collections import Counter
from utils.model_loader import load_sentiment_analyzer, load_emotion_classifier
from utils.helpers import fig_to_html, df_to_html_table
def sentiment_handler(text_input):
"""Show sentiment analysis capabilities."""
output_html = []
# Add result area container
output_html.append('<div class="result-area">')
output_html.append('<h2 class="task-header">Sentiment Analysis</h2>')
output_html.append("""
<div class="alert alert-info">
<i class="fas fa-info-circle"></i>
Sentiment analysis determines the emotional tone behind text to identify if it expresses positive, negative, or neutral sentiment.
</div>
""")
# Model info
output_html.append("""
<div class="alert alert-info">
<h4><i class="fas fa-tools"></i> Models Used:</h4>
<ul>
<li><b>NLTK VADER</b> - Rule-based sentiment analyzer specifically tuned for social media text</li>
<li><b>DistilBERT</b> - Transformer model fine-tuned on SST-2 dataset, achieving ~91% accuracy</li>
<li><b>RoBERTa Emotion</b> - Transformer model for multi-label emotion detection</li>
</ul>
</div>
""")
try:
# VADER Analysis
output_html.append('<h3 class="task-subheader">VADER Sentiment Analysis</h3>')
output_html.append('<p>VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool specifically attuned to sentiments expressed in social media.</p>')
# Get VADER analyzer
vader_analyzer = SentimentIntensityAnalyzer()
vader_scores = vader_analyzer.polarity_scores(text_input)
# Extract scores
compound_score = vader_scores['compound']
pos_score = vader_scores['pos']
neg_score = vader_scores['neg']
neu_score = vader_scores['neu']
# Determine sentiment category
if compound_score >= 0.05:
sentiment_category = "Positive"
sentiment_color = "#4CAF50" # Green
sentiment_emoji = "π"
elif compound_score <= -0.05:
sentiment_category = "Negative"
sentiment_color = "#F44336" # Red
sentiment_emoji = "π"
else:
sentiment_category = "Neutral"
sentiment_color = "#FFC107" # Amber
sentiment_emoji = "π"
# Create sentiment gauge display
output_html.append(f"""
<div class="card">
<div class="card-body">
<div class="text-center mb-3">
<span style="font-size: 3rem; margin-right: 15px;">{sentiment_emoji}</span>
<div>
<h3 class="mb-0" style="color: {sentiment_color};">{sentiment_category}</h3>
<p class="mb-0 fs-5">Compound Score: {compound_score:.2f}</p>
</div>
</div>
<div style="height: 30px; background-color: #e0e0e0; border-radius: 15px; position: relative; overflow: hidden; margin: 10px 0;">
<div style="position: absolute; top: 0; bottom: 0; left: 50%; width: 2px; background-color: #000; z-index: 2;"></div>
<div style="position: absolute; top: 0; bottom: 0; left: {(compound_score + 1) / 2 * 100}%; width: 10px; background-color: {sentiment_color}; border-radius: 5px; transform: translateX(-50%); z-index: 3;"></div>
<div style="position: absolute; top: 0; bottom: 0; left: 0; width: 50%; background: linear-gradient(90deg, #F44336 0%, #FFC107 100%);"></div>
<div style="position: absolute; top: 0; bottom: 0; right: 0; width: 50%; background: linear-gradient(90deg, #FFC107 0%, #4CAF50 100%);"></div>
</div>
<div class="d-flex justify-content-between mt-2">
<span>Negative (-1.0)</span>
<span>Neutral (0.0)</span>
<span>Positive (1.0)</span>
</div>
</div>
</div>
""")
# VADER score breakdown
output_html.append('<h4>VADER Score Breakdown</h4>')
# Create pie chart
fig = plt.figure(figsize=(8, 8))
labels = ['Positive', 'Neutral', 'Negative']
sizes = [pos_score, neu_score, neg_score]
colors = ['#4CAF50', '#FFC107', '#F44336']
explode = (0.1, 0, 0) if pos_score > neg_score and pos_score > neu_score else \
(0, 0.1, 0) if neu_score > pos_score and neu_score > neg_score else \
(0, 0, 0.1)
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%',
shadow=True, startangle=90)
plt.axis('equal')
plt.title('VADER Sentiment Distribution')
# Create detail table
detail_df = pd.DataFrame({
'Metric': ['Positive Score', 'Neutral Score', 'Negative Score', 'Compound Score'],
'Value': [pos_score, neu_score, neg_score, compound_score]
})
# Layout with columns for VADER results
output_html.append('<div class="row">')
# Column 1: Chart
output_html.append('<div class="col-md-6">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
# Column 2: Data
output_html.append('<div class="col-md-6">')
output_html.append(df_to_html_table(detail_df))
# Add interpretation
if compound_score >= 0.75:
interpretation = "Extremely positive sentiment"
elif compound_score >= 0.5:
interpretation = "Moderately positive sentiment"
elif compound_score >= 0.05:
interpretation = "Slightly positive sentiment"
elif compound_score > -0.05:
interpretation = "Neutral sentiment"
elif compound_score > -0.5:
interpretation = "Slightly negative sentiment"
elif compound_score > -0.75:
interpretation = "Moderately negative sentiment"
else:
interpretation = "Extremely negative sentiment"
output_html.append(f"""
<div class="alert alert-success mt-3">
<h4>Interpretation</h4>
<p class="mb-0">{interpretation}</p>
</div>
""")
output_html.append('</div>') # Close column 2
output_html.append('</div>') # Close row
# Transformer-based Sentiment Analysis
output_html.append('<h3 class="task-subheader">Transformer-based Sentiment Analysis</h3>')
output_html.append('<p>This analysis uses a DistilBERT model fine-tuned on the Stanford Sentiment Treebank dataset.</p>')
try:
# Load transformer model
sentiment_model = load_sentiment_analyzer()
# Maximum text length for transformer model (BERT has a 512 token limit)
max_length = 512
# Get prediction
truncated_text = text_input[:max_length * 4] # Rough character estimate
transformer_result = sentiment_model(truncated_text)
if len(text_input) > max_length * 4:
output_html.append(f"""
<div class="alert alert-warning">
<p class="mb-0"><b>β οΈ Note:</b> Text was truncated for analysis as it exceeds the model's length limit.</p>
</div>
""")
# Extract prediction
transformer_label = transformer_result[0]['label']
transformer_score = transformer_result[0]['score']
# Display transformer result
sentiment_color = "#4CAF50" if transformer_label == "POSITIVE" else "#F44336"
sentiment_emoji = "π" if transformer_label == "POSITIVE" else "π"
output_html.append(f"""
<div class="card" style="border-color: {sentiment_color};">
<div class="card-body" style="background-color: {sentiment_color}22;">
<div class="d-flex align-items-center">
<span style="font-size: 3rem; margin-right: 15px;">{sentiment_emoji}</span>
<div>
<h3 class="mb-0" style="color: {sentiment_color};">{transformer_label.capitalize()}</h3>
<p class="mb-0 fs-5">Confidence: {transformer_score:.2%}</p>
</div>
</div>
</div>
</div>
""")
# Confidence bar
output_html.append(f"""
<div style="height: 30px; background-color: #e0e0e0; border-radius: 15px; position: relative; overflow: hidden; margin: 10px 0;">
<div style="position: absolute; top: 0; bottom: 0; left: 0; width: {transformer_score * 100}%; background-color: {sentiment_color}; border-radius: 5px;"></div>
<div style="position: absolute; top: 0; bottom: 0; width: 100%; text-align: center; line-height: 30px; color: #000; font-weight: bold;">
{transformer_score:.1%} Confidence
</div>
</div>
""")
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h4>Transformer Model Error</h4>
<p>Failed to load or run transformer sentiment model: {str(e)}</p>
<p>Falling back to VADER results only.</p>
</div>
""")
# Emotion Analysis
output_html.append('<h3 class="task-subheader">Emotion Analysis</h3>')
output_html.append('<p>Identifying specific emotions in text using a RoBERTa model fine-tuned on the emotion dataset.</p>')
try:
# Load emotion classifier
emotion_classifier = load_emotion_classifier()
# Get predictions
truncated_text = text_input[:max_length * 4] # Rough character estimate
emotion_result = emotion_classifier(truncated_text)
# Extract emotion scores
emotion_scores = {}
for item in emotion_result[0]:
emotion_scores[item['label']] = item['score']
# Create emotion dataframe
emotion_df = pd.DataFrame({
'Emotion': list(emotion_scores.keys()),
'Score': list(emotion_scores.values())
}).sort_values('Score', ascending=False)
# Get primary emotion
primary_emotion = emotion_df.iloc[0]['Emotion']
primary_score = emotion_df.iloc[0]['Score']
# Emotion color map
emotion_colors = {
'joy': '#FFD54F',
'anger': '#EF5350',
'sadness': '#42A5F5',
'fear': '#9C27B0',
'surprise': '#26C6DA',
'love': '#EC407A',
'disgust': '#66BB6A',
'optimism': '#FF9800',
'pessimism': '#795548',
'trust': '#4CAF50',
'anticipation': '#FF7043',
'neutral': '#9E9E9E'
}
# Emotion emoji map
emotion_emojis = {
'joy': 'π',
'anger': 'π ',
'sadness': 'π’',
'fear': 'π¨',
'surprise': 'π²',
'love': 'β€οΈ',
'disgust': 'π€’',
'optimism': 'π€©',
'pessimism': 'π',
'trust': 'π€',
'anticipation': 'π€',
'neutral': 'π'
}
# Create bar chart
fig = plt.figure(figsize=(10, 6))
bars = plt.barh(
emotion_df['Emotion'],
emotion_df['Score'],
color=[emotion_colors.get(emotion, '#9E9E9E') for emotion in emotion_df['Emotion']]
)
plt.xlabel('Score')
plt.title('Emotion Scores')
# Add value labels
for i, bar in enumerate(bars):
plt.text(bar.get_width() + 0.01, bar.get_y() + bar.get_height()/2,
f"{bar.get_width():.2f}", va='center')
plt.xlim(0, 1)
plt.tight_layout()
# Chart section
output_html.append('<section class="emotion-chart-section">')
output_html.append('<div class="chart-container">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
output_html.append('</section>')
# Primary emotion section
primary_color = emotion_colors.get(primary_emotion, '#9E9E9E')
primary_emoji = emotion_emojis.get(primary_emotion, 'π')
output_html.append('<section class="emotion-result-container">')
output_html.append(f"""
<div class="card" style="border-color: {primary_color};">
<div class="card-body" style="background-color: {primary_color}22;">
<div class="d-flex align-items-center">
<span style="font-size: 3rem; margin-right: 15px;">{primary_emoji}</span>
<div>
<h3 class="mb-0" style="color: {primary_color};">{primary_emotion.capitalize()}</h3>
<p class="mb-0 fs-5">Score: {primary_score:.2f}</p>
</div>
</div>
</div>
</div>
""")
# Show top emotions table
output_html.append('<h4>Top Emotions</h4>')
output_html.append(df_to_html_table(emotion_df.head(5)))
output_html.append('</section>') # Close emotion result container
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h4>Emotion Analysis Error</h4>
<p>Failed to load or run emotion classifier: {str(e)}</p>
</div>
""")
# Sentence-level Analysis
output_html.append('<h3 class="task-subheader">Sentence-level Analysis</h3>')
output_html.append('<p>Breaking down sentiment by individual sentences to identify sentiment variations throughout the text.</p>')
# Split text into sentences
sentences = nltk.sent_tokenize(text_input)
# Minimum 2 sentences to do the analysis
if len(sentences) >= 2:
# Calculate sentiment for each sentence
sentence_sentiments = []
for i, sentence in enumerate(sentences):
vader_score = vader_analyzer.polarity_scores(sentence)
sentence_sentiments.append({
'Sentence': sentence,
'Index': i + 1,
'Compound': vader_score['compound'],
'Positive': vader_score['pos'],
'Negative': vader_score['neg'],
'Neutral': vader_score['neu'],
'Sentiment': 'Positive' if vader_score['compound'] >= 0.05 else 'Negative' if vader_score['compound'] <= -0.05 else 'Neutral'
})
# Create DataFrame
sent_df = pd.DataFrame(sentence_sentiments)
# Create line graph of sentiment flow
fig = plt.figure(figsize=(10, 6))
plt.plot(sent_df['Index'], sent_df['Compound'], 'o-', color='#1976D2', linewidth=2, markersize=8)
plt.axhline(y=0, color='#9E9E9E', linestyle='-', alpha=0.3)
plt.axhline(y=0.05, color='#4CAF50', linestyle='--', alpha=0.3)
plt.axhline(y=-0.05, color='#F44336', linestyle='--', alpha=0.3)
# Annotate with sentiment
for i, row in sent_df.iterrows():
if row['Sentiment'] == 'Positive':
color = '#4CAF50'
elif row['Sentiment'] == 'Negative':
color = '#F44336'
else:
color = '#9E9E9E'
plt.scatter(row['Index'], row['Compound'], color=color, s=100, zorder=5)
plt.grid(alpha=0.3)
plt.xlabel('Sentence Number')
plt.ylabel('Compound Sentiment Score')
plt.title('Sentiment Flow Through Text')
plt.ylim(-1.05, 1.05)
plt.tight_layout()
# Calculate statistics
positive_count = sum(1 for score in sent_df['Compound'] if score >= 0.05)
negative_count = sum(1 for score in sent_df['Compound'] if score <= -0.05)
neutral_count = len(sent_df) - positive_count - negative_count
# Chart section
output_html.append('<section class="sentence-chart-section">')
output_html.append('<div class="chart-container">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
output_html.append('</section>')
# Sentence analysis section
output_html.append('<section class="sentence-analysis-container">')
# Create sentence stats
output_html.append(f"""
<div class="row mb-3">
<div class="col-4">
<div class="card text-center">
<div class="card-body p-2">
<h5 class="text-success">{positive_count}</h5>
<small>Positive</small>
</div>
</div>
</div>
<div class="col-4">
<div class="card text-center">
<div class="card-body p-2">
<h5 class="text-warning">{neutral_count}</h5>
<small>Neutral</small>
</div>
</div>
</div>
<div class="col-4">
<div class="card text-center">
<div class="card-body p-2">
<h5 class="text-danger">{negative_count}</h5>
<small>Negative</small>
</div>
</div>
</div>
</div>
""")
# Display sentiment swings
sentiment_changes = 0
prev_sentiment = None
for sentiment in sent_df['Sentiment']:
if prev_sentiment is not None and sentiment != prev_sentiment:
sentiment_changes += 1
prev_sentiment = sentiment
if sentiment_changes > 0:
output_html.append(f"""
<div class="alert alert-success">
<p class="mb-0"><b>Sentiment Shifts:</b> {sentiment_changes}</p>
<p class="mb-0">The text shows {sentiment_changes} shifts in sentiment between sentences.</p>
</div>
""")
# Show sentence breakdown table
output_html.append('<h4>Sentence-by-Sentence Analysis</h4>')
# Custom HTML table for better formatting
output_html.append('<div class="table-responsive" style="max-height: 400px;">')
output_html.append('<table class="table table-striped">')
output_html.append('<thead><tr><th>#</th><th>Sentence</th><th>Sentiment</th></tr></thead>')
output_html.append('<tbody>')
for i, row in sent_df.iterrows():
if row['Sentiment'] == 'Positive':
bg_class = 'table-success'
sentiment_html = f"""
<div class="d-flex align-items-center">
<span class="me-2">π</span>
<span class="text-success fw-bold">Positive</span>
<span class="ms-2 text-muted">({row['Compound']:.2f})</span>
</div>
"""
elif row['Sentiment'] == 'Negative':
bg_class = 'table-danger'
sentiment_html = f"""
<div class="d-flex align-items-center">
<span class="me-2">π</span>
<span class="text-danger fw-bold">Negative</span>
<span class="ms-2 text-muted">({row['Compound']:.2f})</span>
</div>
"""
else:
bg_class = 'table-warning'
sentiment_html = f"""
<div class="d-flex align-items-center">
<span class="me-2">π</span>
<span class="text-warning fw-bold">Neutral</span>
<span class="ms-2 text-muted">({row['Compound']:.2f})</span>
</div>
"""
output_html.append(f'<tr class="{bg_class}">')
output_html.append(f'<td>{i+1}</td>')
output_html.append(f'<td>{row["Sentence"]}</td>')
output_html.append(f'<td>{sentiment_html}</td>')
output_html.append('</tr>')
output_html.append('</tbody></table>')
output_html.append('</div>')
output_html.append('</section>') # Close sentence analysis container
else:
output_html.append("""
<div class="alert alert-warning">
<p class="mb-0">Sentence-level analysis requires at least two sentences. The provided text doesn't have enough sentences for this analysis.</p>
</div>
""")
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h3>Error</h3>
<p>Failed to analyze sentiment: {str(e)}</p>
</div>
""")
# About Sentiment Analysis section
output_html.append("""
<div class="card mt-4">
<div class="card-header">
<h4 class="mb-0">
<i class="fas fa-info-circle"></i>
About Sentiment Analysis
</h4>
</div>
<div class="card-body">
<h5>What is Sentiment Analysis?</h5>
<p>Sentiment Analysis (also known as opinion mining) is a natural language processing technique that identifies
and extracts subjective information from text. It determines whether a piece of text expresses positive, negative,
or neutral sentiment.</p>
<h5>Common Approaches:</h5>
<ol>
<li><b>Lexicon-based</b> (like VADER) - Uses dictionaries of words with pre-assigned sentiment scores</li>
<li><b>Machine learning</b> - Supervised techniques that learn from labeled data</li>
<li><b>Deep learning</b> (like our Transformer models) - Neural networks that can capture complex patterns and contexts</li>
</ol>
<h5>Applications:</h5>
<ul>
<li><b>Brand monitoring</b> - Track public perception of a brand</li>
<li><b>Customer feedback analysis</b> - Understand customer satisfaction</li>
<li><b>Market research</b> - Analyze product reviews and consumer opinions</li>
<li><b>Social media monitoring</b> - Track public sentiment on topics or events</li>
<li><b>Stock market prediction</b> - Analyze news sentiment to predict stock movements</li>
</ul>
</div>
</div>
""")
output_html.append('</div>') # Close result-area div
return '\n'.join(output_html)
|