File size: 25,087 Bytes
ca2c89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import nltk
from collections import Counter

from utils.model_loader import load_sentiment_analyzer, load_emotion_classifier
from utils.helpers import fig_to_html, df_to_html_table

def sentiment_handler(text_input):
    """Show sentiment analysis capabilities."""
    output_html = []
    
    # Add result area container
    output_html.append('<div class="result-area">')
    output_html.append('<h2 class="task-header">Sentiment Analysis</h2>')
    
    output_html.append("""

    <div class="alert alert-info">

    <i class="fas fa-info-circle"></i>

    Sentiment analysis determines the emotional tone behind text to identify if it expresses positive, negative, or neutral sentiment.

    </div>

    """)
    
    # Model info
    output_html.append("""

    <div class="alert alert-info">

        <h4><i class="fas fa-tools"></i> Models Used:</h4>

        <ul>

            <li><b>NLTK VADER</b> - Rule-based sentiment analyzer specifically tuned for social media text</li>

            <li><b>DistilBERT</b> - Transformer model fine-tuned on SST-2 dataset, achieving ~91% accuracy</li>

            <li><b>RoBERTa Emotion</b> - Transformer model for multi-label emotion detection</li>

        </ul>

    </div>

    """)
    
    try:
        # VADER Analysis
        output_html.append('<h3 class="task-subheader">VADER Sentiment Analysis</h3>')
        output_html.append('<p>VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool specifically attuned to sentiments expressed in social media.</p>')
        
        # Get VADER analyzer
        vader_analyzer = SentimentIntensityAnalyzer()
        vader_scores = vader_analyzer.polarity_scores(text_input)
        
        # Extract scores
        compound_score = vader_scores['compound']
        pos_score = vader_scores['pos']
        neg_score = vader_scores['neg']
        neu_score = vader_scores['neu']
        
        # Determine sentiment category
        if compound_score >= 0.05:
            sentiment_category = "Positive"
            sentiment_color = "#4CAF50"  # Green
            sentiment_emoji = "😊"
        elif compound_score <= -0.05:
            sentiment_category = "Negative"
            sentiment_color = "#F44336"  # Red
            sentiment_emoji = "😞"
        else:
            sentiment_category = "Neutral"
            sentiment_color = "#FFC107"  # Amber
            sentiment_emoji = "😐"
        
        # Create sentiment gauge display
        output_html.append(f"""

        <div class="card">

            <div class="card-body">

                <div class="text-center mb-3">

                    <span style="font-size: 3rem; margin-right: 15px;">{sentiment_emoji}</span>

                    <div>

                        <h3 class="mb-0" style="color: {sentiment_color};">{sentiment_category}</h3>

                        <p class="mb-0 fs-5">Compound Score: {compound_score:.2f}</p>

                    </div>

                </div>

                

                <div style="height: 30px; background-color: #e0e0e0; border-radius: 15px; position: relative; overflow: hidden; margin: 10px 0;">

                    <div style="position: absolute; top: 0; bottom: 0; left: 50%; width: 2px; background-color: #000; z-index: 2;"></div>

                    <div style="position: absolute; top: 0; bottom: 0; left: {(compound_score + 1) / 2 * 100}%; width: 10px; background-color: {sentiment_color}; border-radius: 5px; transform: translateX(-50%); z-index: 3;"></div>

                    <div style="position: absolute; top: 0; bottom: 0; left: 0; width: 50%; background: linear-gradient(90deg, #F44336 0%, #FFC107 100%);"></div>

                    <div style="position: absolute; top: 0; bottom: 0; right: 0; width: 50%; background: linear-gradient(90deg, #FFC107 0%, #4CAF50 100%);"></div>

                </div>

                <div class="d-flex justify-content-between mt-2">

                    <span>Negative (-1.0)</span>

                    <span>Neutral (0.0)</span>

                    <span>Positive (1.0)</span>

                </div>

            </div>

        </div>

        """)
        
        # VADER score breakdown
        output_html.append('<h4>VADER Score Breakdown</h4>')
        
        # Create pie chart
        fig = plt.figure(figsize=(8, 8))
        labels = ['Positive', 'Neutral', 'Negative']
        sizes = [pos_score, neu_score, neg_score]
        colors = ['#4CAF50', '#FFC107', '#F44336']
        explode = (0.1, 0, 0) if pos_score > neg_score and pos_score > neu_score else \
                  (0, 0.1, 0) if neu_score > pos_score and neu_score > neg_score else \
                  (0, 0, 0.1)
        
        plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%',
                shadow=True, startangle=90)
        plt.axis('equal')
        plt.title('VADER Sentiment Distribution')
        
        # Create detail table
        detail_df = pd.DataFrame({
            'Metric': ['Positive Score', 'Neutral Score', 'Negative Score', 'Compound Score'],
            'Value': [pos_score, neu_score, neg_score, compound_score]
        })
        
        # Layout with columns for VADER results
        output_html.append('<div class="row">')
        
        # Column 1: Chart
        output_html.append('<div class="col-md-6">')
        output_html.append(fig_to_html(fig))
        output_html.append('</div>')
        
        # Column 2: Data
        output_html.append('<div class="col-md-6">')
        output_html.append(df_to_html_table(detail_df))
        
        # Add interpretation
        if compound_score >= 0.75:
            interpretation = "Extremely positive sentiment"
        elif compound_score >= 0.5:
            interpretation = "Moderately positive sentiment"
        elif compound_score >= 0.05:
            interpretation = "Slightly positive sentiment"
        elif compound_score > -0.05:
            interpretation = "Neutral sentiment"
        elif compound_score > -0.5:
            interpretation = "Slightly negative sentiment"
        elif compound_score > -0.75:
            interpretation = "Moderately negative sentiment"
        else:
            interpretation = "Extremely negative sentiment"
        
        output_html.append(f"""

        <div class="alert alert-success mt-3">

            <h4>Interpretation</h4>

            <p class="mb-0">{interpretation}</p>

        </div>

        """)
        
        output_html.append('</div>')  # Close column 2
        output_html.append('</div>')  # Close row
        
        # Transformer-based Sentiment Analysis
        output_html.append('<h3 class="task-subheader">Transformer-based Sentiment Analysis</h3>')
        output_html.append('<p>This analysis uses a DistilBERT model fine-tuned on the Stanford Sentiment Treebank dataset.</p>')
        
        try:
            # Load transformer model
            sentiment_model = load_sentiment_analyzer()
            
            # Maximum text length for transformer model (BERT has a 512 token limit)
            max_length = 512
            
            # Get prediction
            truncated_text = text_input[:max_length * 4]  # Rough character estimate
            transformer_result = sentiment_model(truncated_text)
            
            if len(text_input) > max_length * 4:
                output_html.append(f"""

                <div class="alert alert-warning">

                    <p class="mb-0"><b>⚠️ Note:</b> Text was truncated for analysis as it exceeds the model's length limit.</p>

                </div>

                """)
            
            # Extract prediction
            transformer_label = transformer_result[0]['label']
            transformer_score = transformer_result[0]['score']
            
            # Display transformer result
            sentiment_color = "#4CAF50" if transformer_label == "POSITIVE" else "#F44336"
            sentiment_emoji = "😊" if transformer_label == "POSITIVE" else "😞"
            
            output_html.append(f"""

            <div class="card" style="border-color: {sentiment_color};">

                <div class="card-body" style="background-color: {sentiment_color}22;">

                    <div class="d-flex align-items-center">

                        <span style="font-size: 3rem; margin-right: 15px;">{sentiment_emoji}</span>

                        <div>

                            <h3 class="mb-0" style="color: {sentiment_color};">{transformer_label.capitalize()}</h3>

                            <p class="mb-0 fs-5">Confidence: {transformer_score:.2%}</p>

                        </div>

                    </div>

                </div>

            </div>

            """)
            
            # Confidence bar
            output_html.append(f"""

            <div style="height: 30px; background-color: #e0e0e0; border-radius: 15px; position: relative; overflow: hidden; margin: 10px 0;">

                <div style="position: absolute; top: 0; bottom: 0; left: 0; width: {transformer_score * 100}%; background-color: {sentiment_color}; border-radius: 5px;"></div>

                <div style="position: absolute; top: 0; bottom: 0; width: 100%; text-align: center; line-height: 30px; color: #000; font-weight: bold;">

                    {transformer_score:.1%} Confidence

                </div>

            </div>

            """)
        
        except Exception as e:
            output_html.append(f"""

            <div class="alert alert-danger">

                <h4>Transformer Model Error</h4>

                <p>Failed to load or run transformer sentiment model: {str(e)}</p>

                <p>Falling back to VADER results only.</p>

            </div>

            """)
        
        # Emotion Analysis
        output_html.append('<h3 class="task-subheader">Emotion Analysis</h3>')
        output_html.append('<p>Identifying specific emotions in text using a RoBERTa model fine-tuned on the emotion dataset.</p>')
        
        try:
            # Load emotion classifier
            emotion_classifier = load_emotion_classifier()
            
            # Get predictions
            truncated_text = text_input[:max_length * 4]  # Rough character estimate
            emotion_result = emotion_classifier(truncated_text)
            
            # Extract emotion scores
            emotion_scores = {}
            for item in emotion_result[0]:
                emotion_scores[item['label']] = item['score']
            
            # Create emotion dataframe
            emotion_df = pd.DataFrame({
                'Emotion': list(emotion_scores.keys()),
                'Score': list(emotion_scores.values())
            }).sort_values('Score', ascending=False)
            
            # Get primary emotion
            primary_emotion = emotion_df.iloc[0]['Emotion']
            primary_score = emotion_df.iloc[0]['Score']
            
            # Emotion color map
            emotion_colors = {
                'joy': '#FFD54F',
                'anger': '#EF5350',
                'sadness': '#42A5F5',
                'fear': '#9C27B0',
                'surprise': '#26C6DA',
                'love': '#EC407A',
                'disgust': '#66BB6A',
                'optimism': '#FF9800',
                'pessimism': '#795548',
                'trust': '#4CAF50',
                'anticipation': '#FF7043',
                'neutral': '#9E9E9E'
            }
            
            # Emotion emoji map
            emotion_emojis = {
                'joy': 'πŸ˜ƒ',
                'anger': '😠',
                'sadness': '😒',
                'fear': '😨',
                'surprise': '😲',
                'love': '❀️',
                'disgust': '🀒',
                'optimism': '🀩',
                'pessimism': 'πŸ˜’',
                'trust': '🀝',
                'anticipation': 'πŸ€”',
                'neutral': '😐'
            }
            
            # Create bar chart
            fig = plt.figure(figsize=(10, 6))
            bars = plt.barh(
                emotion_df['Emotion'], 
                emotion_df['Score'], 
                color=[emotion_colors.get(emotion, '#9E9E9E') for emotion in emotion_df['Emotion']]
            )
            plt.xlabel('Score')
            plt.title('Emotion Scores')
            
            # Add value labels
            for i, bar in enumerate(bars):
                plt.text(bar.get_width() + 0.01, bar.get_y() + bar.get_height()/2, 
                        f"{bar.get_width():.2f}", va='center')
            
            plt.xlim(0, 1)
            plt.tight_layout()
            
            # Chart section
            output_html.append('<section class="emotion-chart-section">')
            output_html.append('<div class="chart-container">')
            output_html.append(fig_to_html(fig))
            output_html.append('</div>')
            output_html.append('</section>')
            
            # Primary emotion section
            primary_color = emotion_colors.get(primary_emotion, '#9E9E9E')
            primary_emoji = emotion_emojis.get(primary_emotion, '😐')
            
            output_html.append('<section class="emotion-result-container">')
            output_html.append(f"""

            <div class="card" style="border-color: {primary_color};">

                <div class="card-body" style="background-color: {primary_color}22;">

                    <div class="d-flex align-items-center">

                        <span style="font-size: 3rem; margin-right: 15px;">{primary_emoji}</span>

                        <div>

                            <h3 class="mb-0" style="color: {primary_color};">{primary_emotion.capitalize()}</h3>

                            <p class="mb-0 fs-5">Score: {primary_score:.2f}</p>

                        </div>

                    </div>

                </div>

            </div>

            """)
            
            # Show top emotions table
            output_html.append('<h4>Top Emotions</h4>')
            output_html.append(df_to_html_table(emotion_df.head(5)))
            output_html.append('</section>')  # Close emotion result container
        
        except Exception as e:
            output_html.append(f"""

            <div class="alert alert-danger">

                <h4>Emotion Analysis Error</h4>

                <p>Failed to load or run emotion classifier: {str(e)}</p>

            </div>

            """)
        
        # Sentence-level Analysis
        output_html.append('<h3 class="task-subheader">Sentence-level Analysis</h3>')
        output_html.append('<p>Breaking down sentiment by individual sentences to identify sentiment variations throughout the text.</p>')
        
        # Split text into sentences
        sentences = nltk.sent_tokenize(text_input)
        
        # Minimum 2 sentences to do the analysis
        if len(sentences) >= 2:
            # Calculate sentiment for each sentence
            sentence_sentiments = []
            for i, sentence in enumerate(sentences):
                vader_score = vader_analyzer.polarity_scores(sentence)
                sentence_sentiments.append({
                    'Sentence': sentence,
                    'Index': i + 1,
                    'Compound': vader_score['compound'],
                    'Positive': vader_score['pos'],
                    'Negative': vader_score['neg'],
                    'Neutral': vader_score['neu'],
                    'Sentiment': 'Positive' if vader_score['compound'] >= 0.05 else 'Negative' if vader_score['compound'] <= -0.05 else 'Neutral'
                })
            
            # Create DataFrame
            sent_df = pd.DataFrame(sentence_sentiments)
            
            # Create line graph of sentiment flow
            fig = plt.figure(figsize=(10, 6))
            plt.plot(sent_df['Index'], sent_df['Compound'], 'o-', color='#1976D2', linewidth=2, markersize=8)
            plt.axhline(y=0, color='#9E9E9E', linestyle='-', alpha=0.3)
            plt.axhline(y=0.05, color='#4CAF50', linestyle='--', alpha=0.3)
            plt.axhline(y=-0.05, color='#F44336', linestyle='--', alpha=0.3)
            
            # Annotate with sentiment
            for i, row in sent_df.iterrows():
                if row['Sentiment'] == 'Positive':
                    color = '#4CAF50'
                elif row['Sentiment'] == 'Negative':
                    color = '#F44336'
                else:
                    color = '#9E9E9E'
                    
                plt.scatter(row['Index'], row['Compound'], color=color, s=100, zorder=5)
            
            plt.grid(alpha=0.3)
            plt.xlabel('Sentence Number')
            plt.ylabel('Compound Sentiment Score')
            plt.title('Sentiment Flow Through Text')
            plt.ylim(-1.05, 1.05)
            plt.tight_layout()
            
            # Calculate statistics
            positive_count = sum(1 for score in sent_df['Compound'] if score >= 0.05)
            negative_count = sum(1 for score in sent_df['Compound'] if score <= -0.05)
            neutral_count = len(sent_df) - positive_count - negative_count
            
            # Chart section
            output_html.append('<section class="sentence-chart-section">')
            output_html.append('<div class="chart-container">')
            output_html.append(fig_to_html(fig))
            output_html.append('</div>')
            output_html.append('</section>')
            
            # Sentence analysis section
            output_html.append('<section class="sentence-analysis-container">')
            
            # Create sentence stats
            output_html.append(f"""

            <div class="row mb-3">

                <div class="col-4">

                    <div class="card text-center">

                        <div class="card-body p-2">

                            <h5 class="text-success">{positive_count}</h5>

                            <small>Positive</small>

                        </div>

                    </div>

                </div>

                <div class="col-4">

                    <div class="card text-center">

                        <div class="card-body p-2">

                            <h5 class="text-warning">{neutral_count}</h5>

                            <small>Neutral</small>

                        </div>

                    </div>

                </div>

                <div class="col-4">

                    <div class="card text-center">

                        <div class="card-body p-2">

                            <h5 class="text-danger">{negative_count}</h5>

                            <small>Negative</small>

                        </div>

                    </div>

                </div>

            </div>

            """)
            
            # Display sentiment swings
            sentiment_changes = 0
            prev_sentiment = None
            for sentiment in sent_df['Sentiment']:
                if prev_sentiment is not None and sentiment != prev_sentiment:
                    sentiment_changes += 1
                prev_sentiment = sentiment
            
            if sentiment_changes > 0:
                output_html.append(f"""

                <div class="alert alert-success">

                    <p class="mb-0"><b>Sentiment Shifts:</b> {sentiment_changes}</p>

                    <p class="mb-0">The text shows {sentiment_changes} shifts in sentiment between sentences.</p>

                </div>

                """)
            
            # Show sentence breakdown table
            output_html.append('<h4>Sentence-by-Sentence Analysis</h4>')
            
            # Custom HTML table for better formatting
            output_html.append('<div class="table-responsive" style="max-height: 400px;">')
            output_html.append('<table class="table table-striped">')
            output_html.append('<thead><tr><th>#</th><th>Sentence</th><th>Sentiment</th></tr></thead>')
            output_html.append('<tbody>')
            
            for i, row in sent_df.iterrows():
                if row['Sentiment'] == 'Positive':
                    bg_class = 'table-success'
                    sentiment_html = f"""

                    <div class="d-flex align-items-center">

                        <span class="me-2">😊</span>

                        <span class="text-success fw-bold">Positive</span>

                        <span class="ms-2 text-muted">({row['Compound']:.2f})</span>

                    </div>

                    """
                elif row['Sentiment'] == 'Negative':
                    bg_class = 'table-danger'
                    sentiment_html = f"""

                    <div class="d-flex align-items-center">

                        <span class="me-2">😞</span>

                        <span class="text-danger fw-bold">Negative</span>

                        <span class="ms-2 text-muted">({row['Compound']:.2f})</span>

                    </div>

                    """
                else:
                    bg_class = 'table-warning'
                    sentiment_html = f"""

                    <div class="d-flex align-items-center">

                        <span class="me-2">😐</span>

                        <span class="text-warning fw-bold">Neutral</span>

                        <span class="ms-2 text-muted">({row['Compound']:.2f})</span>

                    </div>

                    """
                
                output_html.append(f'<tr class="{bg_class}">')
                output_html.append(f'<td>{i+1}</td>')
                output_html.append(f'<td>{row["Sentence"]}</td>')
                output_html.append(f'<td>{sentiment_html}</td>')
                output_html.append('</tr>')
            
            output_html.append('</tbody></table>')
            output_html.append('</div>')
            output_html.append('</section>')  # Close sentence analysis container
        else:
            output_html.append("""

            <div class="alert alert-warning">

                <p class="mb-0">Sentence-level analysis requires at least two sentences. The provided text doesn't have enough sentences for this analysis.</p>

            </div>

            """)
    
    except Exception as e:
        output_html.append(f"""

        <div class="alert alert-danger">

            <h3>Error</h3>

            <p>Failed to analyze sentiment: {str(e)}</p>

        </div>

        """)
    
    # About Sentiment Analysis section
    output_html.append("""

    <div class="card mt-4">

        <div class="card-header">

            <h4 class="mb-0">

                <i class="fas fa-info-circle"></i>

                About Sentiment Analysis

            </h4>

        </div>

        <div class="card-body">

            <h5>What is Sentiment Analysis?</h5>

            

            <p>Sentiment Analysis (also known as opinion mining) is a natural language processing technique that identifies

            and extracts subjective information from text. It determines whether a piece of text expresses positive, negative,

            or neutral sentiment.</p>

            

            <h5>Common Approaches:</h5>

            

            <ol>

                <li><b>Lexicon-based</b> (like VADER) - Uses dictionaries of words with pre-assigned sentiment scores</li>

                <li><b>Machine learning</b> - Supervised techniques that learn from labeled data</li>

                <li><b>Deep learning</b> (like our Transformer models) - Neural networks that can capture complex patterns and contexts</li>

            </ol>

            

            <h5>Applications:</h5>

            

            <ul>

                <li><b>Brand monitoring</b> - Track public perception of a brand</li>

                <li><b>Customer feedback analysis</b> - Understand customer satisfaction</li>

                <li><b>Market research</b> - Analyze product reviews and consumer opinions</li>

                <li><b>Social media monitoring</b> - Track public sentiment on topics or events</li>

                <li><b>Stock market prediction</b> - Analyze news sentiment to predict stock movements</li>

            </ul>

        </div>

    </div>

    """)
    
    output_html.append('</div>')  # Close result-area div
    
    return '\n'.join(output_html)