Spaces:
Sleeping
Sleeping
File size: 19,489 Bytes
ca2c89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import matplotlib.pyplot as plt
import pandas as pd
import nltk
import re
from collections import Counter
from nltk.tokenize import word_tokenize, sent_tokenize
import spacy
from utils.model_loader import load_spacy, download_nltk_resources
from utils.helpers import fig_to_html, df_to_html_table
def tokenization_handler(text_input):
"""Show tokenization capabilities."""
output_html = []
# Add result area container
output_html.append('<div class="result-area">')
output_html.append('<h2 class="task-header">Tokenization</h2>')
output_html.append("""
<div class="alert alert-info">
<i class="fas fa-info-circle"></i>
Tokenization is the process of breaking text into smaller units called tokens, which can be words, characters, or subwords.
</div>
""")
# Model info
output_html.append("""
<div class="alert alert-info">
<h4><i class="fas fa-tools"></i> Tools Used:</h4>
<ul>
<li><b>NLTK</b> - Natural Language Toolkit for basic word and sentence tokenization</li>
<li><b>spaCy</b> - Advanced tokenization with linguistic features</li>
<li><b>WordPiece</b> - Subword tokenization used by BERT and other transformers</li>
</ul>
</div>
""")
try:
# Ensure NLTK resources are downloaded
download_nltk_resources()
# Original Text
output_html.append('<h3 class="task-subheader">Original Text</h3>')
output_html.append(f'<div class="card"><div class="card-body"><div class="text-content" style="word-wrap: break-word; word-break: break-word; overflow-wrap: break-word; max-height: 500px; overflow-y: auto; padding: 15px; background-color: #f8f9fa; border-radius: 5px; border: 1px solid #e9ecef; line-height: 1.6;">{text_input}</div></div></div>')
# Word Tokenization
output_html.append('<h3 class="task-subheader">Word Tokenization</h3>')
output_html.append('<p>Breaking text into individual words and punctuation marks.</p>')
# NLTK Word Tokenization
nltk_tokens = word_tokenize(text_input)
# Format tokens
token_html = ""
for token in nltk_tokens:
token_html += f'<span class="token">{token}</span>'
output_html.append(f"""
<div class="card">
<div class="card-body">
<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; line-height: 2.5;">
{token_html}
</div>
</div>
</div>
<style>
.token {{
background-color: #E3F2FD;
border: 1px solid #1976D2;
border-radius: 4px;
padding: 3px 6px;
margin: 3px;
display: inline-block;
}}
</style>
""")
# Token statistics
token_count = len(nltk_tokens)
unique_tokens = len(set([t.lower() for t in nltk_tokens]))
alpha_only = sum(1 for t in nltk_tokens if t.isalpha())
numeric = sum(1 for t in nltk_tokens if t.isnumeric())
punct = sum(1 for t in nltk_tokens if all(c in '.,;:!?-"\'()[]{}' for c in t))
output_html.append(f"""
<div class="row mt-3">
<div class="col-md-2">
<div class="card text-center">
<div class="card-body">
<h5 class="text-primary">{token_count}</h5>
<small>Total Tokens</small>
</div>
</div>
</div>
<div class="col-md-2">
<div class="card text-center">
<div class="card-body">
<h5 class="text-success">{unique_tokens}</h5>
<small>Unique Tokens</small>
</div>
</div>
</div>
<div class="col-md-2">
<div class="card text-center">
<div class="card-body">
<h5 class="text-info">{alpha_only}</h5>
<small>Alphabetic</small>
</div>
</div>
</div>
<div class="col-md-2">
<div class="card text-center">
<div class="card-body">
<h5 class="text-warning">{numeric}</h5>
<small>Numeric</small>
</div>
</div>
</div>
<div class="col-md-2">
<div class="card text-center">
<div class="card-body">
<h5 class="text-danger">{punct}</h5>
<small>Punctuation</small>
</div>
</div>
</div>
</div>
""")
# Sentence Tokenization
output_html.append('<h3 class="task-subheader">Sentence Tokenization</h3>')
output_html.append('<p>Dividing text into individual sentences.</p>')
# NLTK Sentence Tokenization
nltk_sentences = sent_tokenize(text_input)
# Format sentences
sentence_html = ""
for i, sentence in enumerate(nltk_sentences):
sentence_html += f'<div class="sentence"><span class="sentence-num">{i+1}</span> {sentence}</div>'
output_html.append(f"""
<div class="card">
<div class="card-body">
<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px;">
{sentence_html}
</div>
</div>
</div>
<style>
.sentence {{
background-color: #E1F5FE;
border-left: 3px solid #03A9F4;
padding: 10px;
margin: 8px 0;
border-radius: 0 5px 5px 0;
position: relative;
}}
.sentence-num {{
font-weight: bold;
color: #0277BD;
margin-right: 5px;
}}
</style>
""")
output_html.append(f'<p class="mt-3">Text contains {len(nltk_sentences)} sentences with an average of {token_count / len(nltk_sentences):.1f} tokens per sentence.</p>')
# Advanced Tokenization with spaCy
output_html.append('<h3 class="task-subheader">Linguistic Tokenization (spaCy)</h3>')
output_html.append('<p>spaCy provides more linguistically-aware tokenization with additional token properties.</p>')
# Load spaCy model
nlp = load_spacy()
doc = nlp(text_input)
# Create token table
token_data = []
for token in doc:
token_data.append({
'Text': token.text,
'Lemma': token.lemma_,
'POS': token.pos_,
'Tag': token.tag_,
'Dep': token.dep_,
'Shape': token.shape_,
'Alpha': token.is_alpha,
'Stop': token.is_stop
})
token_df = pd.DataFrame(token_data)
# Display interactive table with expandable rows
output_html.append("""
<div class="table-responsive">
<table class="table table-striped table-hover">
<thead class="table-primary sticky-top">
<tr>
<th>Token</th>
<th>Lemma</th>
<th>POS</th>
<th>Tag</th>
<th>Dependency</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
""")
for token in doc:
# Determine row color based on token type
row_class = ""
if token.is_stop:
row_class = "table-danger" # Light red for stopwords
elif token.pos_ == "VERB":
row_class = "table-success" # Light green for verbs
elif token.pos_ == "NOUN" or token.pos_ == "PROPN":
row_class = "table-primary" # Light blue for nouns
elif token.pos_ == "ADJ":
row_class = "table-warning" # Light yellow for adjectives
output_html.append(f"""
<tr class="{row_class}">
<td><strong>{token.text}</strong></td>
<td>{token.lemma_}</td>
<td>{token.pos_}</td>
<td>{token.tag_}</td>
<td>{token.dep_}</td>
<td>
<span class="badge {'bg-success' if token.is_alpha else 'bg-danger'}">
{'Alpha' if token.is_alpha else 'Non-alpha'}
</span>
<span class="badge {'bg-danger' if token.is_stop else 'bg-success'}">
{'Stopword' if token.is_stop else 'Content'}
</span>
<span class="badge bg-info">
Shape: {token.shape_}
</span>
</td>
</tr>
""")
output_html.append("""
</tbody>
</table>
</div>
""")
# Create visualization for POS distribution
pos_counts = Counter([token.pos_ for token in doc])
# Create bar chart for POS distribution
fig = plt.figure(figsize=(10, 6))
plt.bar(pos_counts.keys(), pos_counts.values(), color='#1976D2')
plt.xlabel('Part of Speech')
plt.ylabel('Count')
plt.title('Part-of-Speech Distribution')
plt.xticks(rotation=45)
plt.tight_layout()
output_html.append('<h4>Token Distribution by Part of Speech</h4>')
output_html.append(fig_to_html(fig))
# Subword Tokenization
output_html.append('<h3 class="task-subheader">Subword Tokenization (WordPiece/BPE)</h3>')
output_html.append("""
<div class="alert alert-light">
<p>
Subword tokenization breaks words into smaller units to handle rare words and morphologically rich languages.
This technique is widely used in modern transformer models like BERT, GPT, etc.
</p>
</div>
""")
try:
from transformers import BertTokenizer, GPT2Tokenizer
# Load tokenizers
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Tokenize with BERT
bert_tokens = bert_tokenizer.tokenize(text_input)
# Tokenize with GPT-2
# GPT-2 doesn't have a special tokenize method like BERT, so we encode and decode
gpt2_encoding = gpt2_tokenizer.encode(text_input)
gpt2_tokens = [gpt2_tokenizer.decode([token]).strip() for token in gpt2_encoding]
# BERT WordPiece Section
output_html.append('<h4 class="bg-primary text-white p-3 rounded">BERT WordPiece</h4>')
output_html.append('<p>BERT uses WordPiece tokenization which marks subword units with ##.</p>')
# Create token display
output_html.append('<div class="card"><div class="card-body">')
output_html.append('<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; line-height: 2.5;">')
for token in bert_tokens:
if token.startswith("##"):
output_html.append(f'<span class="token" style="background-color: #FFECB3; border-color: #FFA000;">{token}</span>')
else:
output_html.append(f'<span class="token">{token}</span>')
output_html.append('</div></div></div>')
output_html.append(f'<p class="mt-2">Total BERT tokens: {len(bert_tokens)}</p>')
# GPT-2 BPE Section
output_html.append('<h4 class="bg-primary text-white p-3 rounded mt-4">GPT-2 BPE</h4>')
output_html.append('<p>GPT-2 uses Byte-Pair Encoding (BPE) tokenization where Ġ represents a space before the token.</p>')
output_html.append('<div class="card"><div class="card-body">')
output_html.append('<div style="background-color: #f5f5f5; padding: 15px; border-radius: 5px; line-height: 2.5;">')
for token in gpt2_tokens:
if token.startswith("Ġ"):
output_html.append(f'<span class="token">{token}</span>')
else:
output_html.append(f'<span class="token" style="background-color: #FFECB3; border-color: #FFA000;">{token}</span>')
output_html.append('</div></div></div>')
output_html.append(f'<p class="mt-2">Total GPT-2 tokens: {len(gpt2_tokens)}</p>')
# Compare token counts
output_html.append('<h4>Token Count Comparison</h4>')
token_count_data = {
'Tokenizer': ['Words (spaces)', 'NLTK', 'spaCy', 'BERT WordPiece', 'GPT-2 BPE'],
'Token Count': [
len(text_input.split()),
len(nltk_tokens),
len(doc),
len(bert_tokens),
len(gpt2_tokens)
]
}
token_count_df = pd.DataFrame(token_count_data)
# Create comparison chart
fig = plt.figure(figsize=(10, 6))
bars = plt.bar(token_count_df['Tokenizer'], token_count_df['Token Count'], color=['#BBDEFB', '#90CAF9', '#64B5F6', '#42A5F5', '#2196F3'])
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.5,
f'{height}',
ha='center', va='bottom')
plt.ylabel('Token Count')
plt.title('Tokenization Comparison by Method')
plt.ylim(0, max(token_count_df['Token Count']) * 1.1) # Add some headroom for labels
plt.tight_layout()
output_html.append(fig_to_html(fig))
# Add token length distribution analysis
output_html.append('<h4>Token Length Distribution</h4>')
token_lengths = [len(token) for token in nltk_tokens]
fig = plt.figure(figsize=(10, 6))
plt.hist(token_lengths, bins=range(1, max(token_lengths) + 2), color='#4CAF50', alpha=0.7)
plt.xlabel('Token Length')
plt.ylabel('Frequency')
plt.title('Token Length Distribution')
plt.grid(axis='y', alpha=0.3)
plt.tight_layout()
output_html.append(fig_to_html(fig))
# Add tokenization statistics summary
avg_token_length = sum(token_lengths) / len(token_lengths) if token_lengths else 0
output_html.append(f"""
<h4>Tokenization Statistics</h4>
<div class="row mt-3">
<div class="col-md-4">
<div class="card text-center">
<div class="card-body">
<h3 class="text-success">{token_count}</h3>
<p class="mb-0">Total Tokens</p>
</div>
</div>
</div>
<div class="col-md-4">
<div class="card text-center">
<div class="card-body">
<h3 class="text-primary">{avg_token_length:.2f}</h3>
<p class="mb-0">Average Token Length</p>
</div>
</div>
</div>
<div class="col-md-4">
<div class="card text-center">
<div class="card-body">
<h3 class="text-warning">{token_count / len(nltk_sentences):.2f}</h3>
<p class="mb-0">Tokens per Sentence</p>
</div>
</div>
</div>
</div>
""")
except Exception as e:
output_html.append(f"""
<div class="alert alert-warning">
<h4>Subword Tokenization Error</h4>
<p>Failed to load transformer tokenizers: {str(e)}</p>
<p>The transformers library may not be installed or there might be network issues when downloading models.</p>
</div>
""")
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h3>Error</h3>
<p>Failed to process tokenization: {str(e)}</p>
</div>
""")
# About Tokenization section
output_html.append("""
<div class="card mt-4">
<div class="card-header">
<h4 class="mb-0">
<i class="fas fa-info-circle"></i>
About Tokenization
</h4>
</div>
<div class="card-body">
<h5>What is Tokenization?</h5>
<p>Tokenization is the process of breaking down text into smaller units called tokens.
These tokens can be words, subwords, characters, or symbols, depending on the approach.
It's typically the first step in most NLP pipelines.</p>
<h5>Types of Tokenization:</h5>
<ul>
<li><b>Word Tokenization</b> - Splits text on whitespace and punctuation (with various rules)</li>
<li><b>Sentence Tokenization</b> - Divides text into sentences using punctuation and other rules</li>
<li><b>Subword Tokenization</b> - Splits words into meaningful subunits (WordPiece, BPE, SentencePiece)</li>
<li><b>Character Tokenization</b> - Treats each character as a separate token</li>
</ul>
<h5>Why Subword Tokenization?</h5>
<p>Modern NLP models use subword tokenization because:</p>
<ul>
<li>It handles out-of-vocabulary words better</li>
<li>It represents rare words by decomposing them</li>
<li>It works well for morphologically rich languages</li>
<li>It balances vocabulary size and token length</li>
</ul>
</div>
</div>
""")
output_html.append('</div>') # Close result-area div
return '\n'.join(output_html)
|