File size: 32,482 Bytes
ca2c89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import nltk
from collections import Counter
import networkx as nx
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation, NMF
import wordcloud
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import matplotlib.colors as mcolors
import io
import base64

from utils.model_loader import download_nltk_resources
from utils.helpers import fig_to_html, df_to_html_table

def classify_topic(text_input):
    """Classify the topic of the text into predefined categories."""
    # Define topic keywords
    topic_keywords = {
        'environment': ['climate', 'environment', 'weather', 'earth', 'temperature', 'pollution', 'warming', 'planet', 'ecosystem', 'sustainable'],
        'science': ['science', 'scientific', 'research', 'study', 'experiment', 'discovery', 'theory', 'laboratory', 'data'],
        'business': ['business', 'company', 'market', 'economy', 'economic', 'finance', 'industry', 'corporate', 'trade'],
        'education': ['education', 'school', 'student', 'learn', 'teach', 'academic', 'university', 'college', 'knowledge'],
        'health': ['health', 'medical', 'doctor', 'patient', 'disease', 'treatment', 'hospital', 'medicine', 'healthcare'],
        'technology': ['technology', 'tech', 'computer', 'digital', 'software', 'hardware', 'internet', 'device', 'innovation'],
        'politics': ['politics', 'government', 'policy', 'election', 'political', 'law', 'president', 'party', 'vote'],
        'sports': ['sport', 'game', 'team', 'player', 'competition', 'athlete', 'championship', 'tournament', 'coach'],
        'entertainment': ['entertainment', 'movie', 'music', 'film', 'television', 'celebrity', 'actor', 'actress', 'show'],
        'travel': ['travel', 'trip', 'vacation', 'tourist', 'destination', 'journey', 'adventure', 'flight', 'hotel']
    }
    
    # Convert text to lowercase
    text = text_input.lower()
    
    # Count keyword occurrences for each topic
    topic_scores = {}
    for topic, keywords in topic_keywords.items():
        score = 0
        for keyword in keywords:
            # Count occurrences of the keyword
            count = text.count(keyword)
            # Add to the topic score
            score += count
        
        # Store the normalized score
        topic_scores[topic] = score / (len(text.split()) + 0.001)  # Normalize by text length

    # Get the main topic and confidence
    main_topic = max(topic_scores.items(), key=lambda x: x[1])
    total_score = sum(topic_scores.values()) + 0.001  # Avoid division by zero
    confidence = main_topic[1] / total_score if total_score > 0 else 0
    confidence = round(confidence * 100, 1)  # Convert to percentage

    # Sort topics by score for visualization
    sorted_topics = sorted(topic_scores.items(), key=lambda x: x[1], reverse=True)
    
    return main_topic[0], confidence, sorted_topics, topic_scores

def extract_key_phrases(text_input, top_n=10):
    """Extract key phrases from text."""
    # Download required NLTK resources
    download_nltk_resources()
    
    # Define stop words
    stop_words = set(stopwords.words('english'))
    
    # Tokenize into sentences
    sentences = nltk.sent_tokenize(text_input)
    
    # Extract 2-3 word phrases (n-grams)
    phrases = []
    
    # Get bigrams
    bigram_vectorizer = CountVectorizer(ngram_range=(2, 2), stop_words='english', max_features=100)
    try:
        bigram_matrix = bigram_vectorizer.fit_transform([text_input])
        bigram_features = bigram_vectorizer.get_feature_names_out()
        bigram_scores = bigram_matrix.toarray()[0]
        
        for phrase, score in zip(bigram_features, bigram_scores):
            if score >= 1:  # Must appear at least once
                phrases.append((phrase, int(score)))
    except:
        pass  # Handle potential errors
    
    # Get trigrams
    trigram_vectorizer = CountVectorizer(ngram_range=(3, 3), stop_words='english', max_features=100)
    try:
        trigram_matrix = trigram_vectorizer.fit_transform([text_input])
        trigram_features = trigram_vectorizer.get_feature_names_out()
        trigram_scores = trigram_matrix.toarray()[0]
        
        for phrase, score in zip(trigram_features, trigram_scores):
            if score >= 1:  # Must appear at least once
                phrases.append((phrase, int(score)))
    except:
        pass
    
    # Also extract single important words (nouns, verbs, adjectives)
    words = word_tokenize(text_input)
    pos_tags = nltk.pos_tag(words)
    
    important_words = []
    for word, tag in pos_tags:
        # Only consider nouns, verbs, and adjectives
        if (tag.startswith('NN') or tag.startswith('VB') or tag.startswith('JJ')) and word.lower() not in stop_words and len(word) > 2:
            important_words.append(word.lower())
    
    # Count word frequencies
    word_freq = Counter(important_words)
    
    # Add important single words to phrases
    for word, freq in word_freq.most_common(top_n):
        if freq >= 1:
            phrases.append((word, freq))
    
    # Sort phrases by frequency
    sorted_phrases = sorted(phrases, key=lambda x: x[1], reverse=True)
    
    # Return top N phrases
    return sorted_phrases[:top_n]

def create_phrase_cloud(phrases):
    """Create a word cloud from phrases."""
    # Convert phrases to a dictionary of {phrase: frequency}
    phrase_freq = {phrase: freq for phrase, freq in phrases}
    
    # Create word cloud
    wc = wordcloud.WordCloud(
        background_color='white',
        width=600,
        height=400,
        colormap='viridis',
        max_words=50,
        prefer_horizontal=0.9,
        random_state=42
    )
    
    try:
        # Generate word cloud from phrases
        wc.generate_from_frequencies(phrase_freq)
        
        # Create figure
        fig = plt.figure(figsize=(10, 6))
        plt.imshow(wc, interpolation='bilinear')
        plt.axis('off')
        plt.tight_layout()
        
        return fig_to_html(fig)
    except:
        return "<p>Could not generate phrase cloud due to insufficient data.</p>"

def topic_analysis_handler(text_input):
    """Show topic analysis capabilities."""
    output_html = []
    
    # Add result area container
    output_html.append('<div class="result-area">')
    output_html.append('<h2 class="task-header">Topic Analysis</h2>')
    
    output_html.append("""

    <div class="alert alert-info">

    <i class="fas fa-info-circle"></i>

    Topic analysis identifies the main themes and subjects in a text, helping to categorize content and understand what it's about.

    </div>

    """)
    
    # Model info
    output_html.append("""

    <div class="alert alert-info">

        <h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>

        <ul>

            <li><b>Zero-shot Classification</b> - BART model that can classify text without specific training</li>

            <li><b>TF-IDF Vectorizer</b> - Statistical method to identify important terms</li>

            <li><b>Word/Phrase Analysis</b> - Extraction of important n-grams</li>

        </ul>

    </div>

    """)
    
    try:
        # Ensure NLTK resources are downloaded
        download_nltk_resources()
        
        # Check if text is long enough for meaningful analysis
        if len(text_input.split()) < 50:
            output_html.append(f"""

            <div class="alert alert-warning">

                <h3>Text Too Short for Full Topic Analysis</h3>

                <p>The provided text contains only {len(text_input.split())} words. 

                For meaningful topic analysis, please provide a longer text (at least 50 words).

                We'll still perform basic frequency analysis, but topic modeling results may not be reliable.</p>

            </div>

            """)
        
        # Text cleaning and preprocessing
        stop_words = set(stopwords.words('english'))
        lemmatizer = WordNetLemmatizer()
        
        def preprocess_text(text):
            # Tokenize
            tokens = word_tokenize(text.lower())
            # Remove stopwords and non-alphabetic tokens
            filtered_tokens = [token for token in tokens if token.isalpha() and token not in stop_words]
            # Lemmatize
            lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]
            return lemmatized_tokens
        
        # Process the text
        processed_tokens = preprocess_text(text_input)
        processed_text = ' '.join(processed_tokens)
        
        # Add Topic Classification section
        output_html.append('<h3 class="task-subheader">Topic Classification</h3>')
        
        # Get topic classification
        main_topic, confidence, sorted_topics, topic_scores = classify_topic(text_input)
        
        # Display topic classification results
        output_html.append(f"""

        <div class="alert alert-success">

            <p class="mb-0 fs-5">This text is primarily about <strong>{main_topic}</strong> with {confidence}% confidence</p>

        </div>

        """)
        
        # Display topic scores (stacked rows to avoid overlap)
        output_html.append('<div class="row">')
        
        # Row 1: Topic Relevance Chart (full width)
        output_html.append('<div class="col-12">')
        output_html.append('<h4>Topic Relevance</h4>')
        
        # Create horizontal bar chart for topic scores
        plt.figure(figsize=(10, 6))
        topics = [topic for topic, score in sorted_topics]
        scores = [score for topic, score in sorted_topics]
        
        # Only show top topics for clarity
        top_n = min(10, len(topics))
        y_pos = np.arange(top_n)
        
        # Get a color gradient
        colors = plt.cm.Blues(np.linspace(0.4, 0.8, top_n))
        
        # Create horizontal bars
        bars = plt.barh(y_pos, [s * 100 for s in scores[:top_n]], color=colors)
        
        # Add labels and values
        for i, bar in enumerate(bars):
            width = bar.get_width()
            plt.text(width + 0.5, bar.get_y() + bar.get_height()/2,
                    f"{width:.1f}%",
                    va='center')
        
        plt.yticks(y_pos, topics[:top_n])
        plt.xlabel('Relevance')
        plt.title('Topic Scores')
        plt.tight_layout()
        
        output_html.append(fig_to_html(plt.gcf()))
        output_html.append('</div>')
        output_html.append('</div>')  # Close row 1
        
        # Row 2: Topic Scores Table (full width)
        output_html.append('<div class="row mt-3">')
        output_html.append('<div class="col-12">')
        output_html.append('<h4>Topic Scores</h4>')
        
        # Create table of topic scores
        topic_scores_df = pd.DataFrame({
            'Rank': range(1, len(sorted_topics) + 1),
            'Topic': [topic.capitalize() for topic, _ in sorted_topics],
            'Confidence': [f"{score:.4f}" for _, score in sorted_topics]
        })
        
        output_html.append(df_to_html_table(topic_scores_df))
        output_html.append('</div>')
        output_html.append('</div>')  # Close row 2
        
        # Extract and display key phrases
        output_html.append('<h3 class="task-subheader">Key Phrases</h3>')
        
        # Extract key phrases
        key_phrases = extract_key_phrases(text_input)
        
        # Display key phrases in a table
        if key_phrases:
            phrase_df = pd.DataFrame({
                'Phrase': [phrase for phrase, _ in key_phrases],
                'Frequency': [freq for _, freq in key_phrases]
            })
            
            output_html.append('<div class="row">')
            
            # Row 1: Key phrases table (full width)
            output_html.append('<div class="col-12">')
            output_html.append(df_to_html_table(phrase_df))
            output_html.append('</div>')
            
            # Row 2: Phrase cloud (full width)
            output_html.append('</div>')  # Close row 1
            output_html.append('<div class="row mt-3">')
            output_html.append('<div class="col-12">')
            output_html.append(create_phrase_cloud(key_phrases))
            output_html.append('</div>')
            
            output_html.append('</div>')  # Close row 2
        else:
            output_html.append("<p>No key phrases could be extracted from the text.</p>")
        
        # Term Frequency Analysis
        output_html.append('<h3 class="task-subheader">Key Term Frequency Analysis</h3>')
        
        # Get token frequencies
        token_freq = Counter(processed_tokens)
        
        # Sort by frequency
        sorted_word_freq = dict(sorted(token_freq.items(), key=lambda item: item[1], reverse=True))
        
        # Take top 25 words for visualization
        top_n = 25
        top_words = list(sorted_word_freq.keys())[:top_n]
        top_freqs = list(sorted_word_freq.values())[:top_n]
        
        # Create visualization
        fig = plt.figure(figsize=(10, 6))
        colors = plt.cm.viridis(np.linspace(0.3, 0.85, len(top_words)))
        bars = plt.bar(top_words, top_freqs, color=colors)
        plt.xlabel('Term')
        plt.ylabel('Frequency')
        plt.title(f'Top {top_n} Term Frequencies')
        plt.xticks(rotation=45, ha='right')
        plt.tight_layout()
        
        # Add value labels on top of bars
        for bar in bars:
            height = bar.get_height()
            plt.text(bar.get_x() + bar.get_width()/2., height + 0.1,
                    f'{height}',
                    ha='center', va='bottom',
                    fontsize=8)
        
        # Show plots and table in stacked rows
        output_html.append('<div class="row">')
        
        # Row 1: Chart (full width)
        output_html.append('<div class="col-12">')
        output_html.append(fig_to_html(fig))
        output_html.append('</div>')
        
        # Row 2: Top terms table (full width)
        output_html.append('</div>')  # Close row 1
        output_html.append('<div class="row mt-3">')
        output_html.append('<div class="col-12">')
        output_html.append('<h4>Top Terms</h4>')
        
        # Create DataFrame of top terms
        top_terms_df = pd.DataFrame({
            'Term': list(sorted_word_freq.keys())[:15],
            'Frequency': list(sorted_word_freq.values())[:15]
        })
        
        output_html.append(df_to_html_table(top_terms_df))
        output_html.append('</div>')
        output_html.append('</div>')  # Close row 2
        
        # WordCloud visualization
        output_html.append('<h3 class="task-subheader">Word Cloud Visualization</h3>')
        output_html.append('<p>The size of each word represents its frequency in the text.</p>')
        
        # Generate word cloud
        wc = wordcloud.WordCloud(
            background_color='white',
            max_words=100,
            width=800,
            height=400,
            colormap='viridis',
            contour_width=1,
            contour_color='steelblue'
        )
        wc.generate_from_frequencies(sorted_word_freq)
        
        # Create figure
        fig = plt.figure(figsize=(12, 6))
        plt.imshow(wc, interpolation='bilinear')
        plt.axis('off')
        plt.tight_layout()
        
        output_html.append(fig_to_html(fig))
        
        # TF-IDF Analysis
        output_html.append('<h3 class="task-subheader">TF-IDF Analysis</h3>')
        output_html.append("""

        <div class="alert alert-light">

            <p class="mb-0">

                Term Frequency-Inverse Document Frequency (TF-IDF) identifies terms that are distinctive to parts of the text.

                In this case, we treat each sentence as a separate "document" for the analysis.

            </p>

        </div>

        """)
        
        # Split text into sentences
        sentences = nltk.sent_tokenize(text_input)
        
        # Only perform TF-IDF if there are enough sentences
        if len(sentences) >= 3:
            # Create TF-IDF vectorizer
            tfidf_vectorizer = TfidfVectorizer(
                max_features=100, 
                stop_words='english',
                min_df=1
            )
            
            # Fit and transform the sentences
            tfidf_matrix = tfidf_vectorizer.fit_transform(sentences)
            
            # Get feature names
            feature_names = tfidf_vectorizer.get_feature_names_out()
            
            # Create a table of top TF-IDF terms for each sentence
            tfidf_data = []
            
            for i, sentence in enumerate(sentences[:min(len(sentences), 5)]):  # Show max 5 sentences to avoid clutter
                # Get top terms for this sentence
                tfidf_scores = tfidf_matrix[i].toarray()[0]
                top_indices = np.argsort(tfidf_scores)[-5:][::-1]  # Top 5 terms
                
                top_terms = [feature_names[idx] for idx in top_indices]
                top_scores = [tfidf_scores[idx] for idx in top_indices]
                
                # Format for display
                formatted_terms = ', '.join([f"{term} ({score:.3f})" for term, score in zip(top_terms, top_scores)])
                
                shortened_sentence = (sentence[:75] + '...') if len(sentence) > 75 else sentence
                
                tfidf_data.append({
                    'Sentence': shortened_sentence,
                    'Distinctive Terms (TF-IDF scores)': formatted_terms
                })
            
            # Create dataframe
            tfidf_df = pd.DataFrame(tfidf_data)
            
            output_html.append('<div class="mt-3">')
            output_html.append(df_to_html_table(tfidf_df))
            output_html.append('</div>')
            
            # Create a TF-IDF term-sentence heatmap
            if len(sentences) <= 10:  # Only create heatmap for reasonable number of sentences
                # Get top terms across all sentences
                mean_tfidf = np.mean(tfidf_matrix.toarray(), axis=0)
                top_indices = np.argsort(mean_tfidf)[-10:][::-1]  # Top 10 terms
                top_terms = [feature_names[idx] for idx in top_indices]
                
                # Create heatmap data
                heatmap_data = tfidf_matrix[:, top_indices].toarray()
                
                # Create heatmap
                fig, ax = plt.subplots(figsize=(10, 6))
                plt.imshow(heatmap_data, cmap='viridis', aspect='auto')
                
                # Add labels
                plt.yticks(range(len(sentences)), [f"Sent {i+1}" for i in range(len(sentences))])
                plt.xticks(range(len(top_terms)), top_terms, rotation=45, ha='right')
                
                plt.colorbar(label='TF-IDF Score')
                plt.xlabel('Terms')
                plt.ylabel('Sentences')
                plt.title('TF-IDF Heatmap: Term Importance by Sentence')
                plt.tight_layout()
                
                output_html.append('<h4>Term Importance Heatmap</h4>')
                output_html.append('<p>This heatmap shows which terms are most distinctive in each sentence.</p>')
                output_html.append(fig_to_html(fig))
        else:
            output_html.append("""

            <div class="alert alert-warning">

                <p class="mb-0">TF-IDF analysis requires at least 3 sentences. The provided text doesn't have enough sentences for this analysis.</p>

            </div>

            """)
        
        # Topic Modeling
        output_html.append('<h3 class="task-subheader">Topic Modeling</h3>')
        output_html.append("""

        <div class="alert alert-light">

            <p class="mb-0">

                Topic modeling uses statistical methods to discover abstract "topics" that occur in a collection of documents.

                Here, we use Latent Dirichlet Allocation (LDA) to identify potential topics.

            </p>

        </div>

        """)
        
        # Check if text is long enough for topic modeling
        if len(text_input.split()) < 50:
            output_html.append("""

            <div class="alert alert-warning">

                <p class="mb-0">Topic modeling works best with longer texts. The provided text is too short for reliable topic modeling.</p>

            </div>

            """)
        else:
            # Create document-term matrix
            # For short single-document text, we'll split by sentences to create a "corpus"
            sentences = nltk.sent_tokenize(text_input)
            
            if len(sentences) < 4:
                output_html.append("""

                <div class="alert alert-warning">

                    <p class="mb-0">Topic modeling works best with multiple documents or paragraphs. Since the provided text has few sentences,

                    the topic modeling results may not be meaningful.</p>

                </div>

                """)
            
            # Create document-term matrix using CountVectorizer
            vectorizer = CountVectorizer(
                max_features=1000,
                stop_words='english',
                min_df=1
            )
            
            # Create a document-term matrix
            dtm = vectorizer.fit_transform(sentences)
            feature_names = vectorizer.get_feature_names_out()
            
            # Set number of topics based on text length
            n_topics = min(3, max(2, len(sentences) // 3))
            
            # LDA Topic Modeling
            lda_model = LatentDirichletAllocation(
                n_components=n_topics,
                max_iter=10,
                learning_method='online',
                random_state=42
            )
            
            lda_model.fit(dtm)
            
            # Get top terms for each topic
            n_top_words = 10
            topic_terms = []
            for topic_idx, topic in enumerate(lda_model.components_):
                top_indices = topic.argsort()[:-n_top_words - 1:-1]
                top_terms = [feature_names[i] for i in top_indices]
                topic_weight = topic[top_indices].sum() / topic.sum()  # Approximation of topic "importance"
                topic_terms.append({
                    "Topic": f"Topic {topic_idx + 1}",
                    "Top Terms": ", ".join(top_terms),
                    "Weight": f"{topic_weight:.2f}"
                })
            
            topic_df = pd.DataFrame(topic_terms)
            
            output_html.append('<h4>LDA Topic Model Results</h4>')
            output_html.append(df_to_html_table(topic_df))
            
            # Create word cloud for each topic
            output_html.append('<h4>Topic Word Clouds</h4>')
            output_html.append('<div class="row">')
            
            for topic_idx, topic in enumerate(lda_model.components_):
                # Get topic words and weights
                word_weights = {feature_names[i]: topic[i] for i in topic.argsort()[:-50-1:-1]}
                
                # Generate word cloud
                wc = wordcloud.WordCloud(
                    background_color='white',
                    max_words=30,
                    width=400,
                    height=300,
                    colormap='plasma',
                    contour_width=1,
                    contour_color='steelblue'
                )
                wc.generate_from_frequencies(word_weights)
                
                # Create figure
                fig = plt.figure(figsize=(6, 4))
                plt.imshow(wc, interpolation='bilinear')
                plt.axis('off')
                plt.title(f'Topic {topic_idx + 1}')
                plt.tight_layout()
                
                output_html.append(f'<div class="col-12 mb-3">')
                output_html.append(fig_to_html(fig))
                output_html.append('</div>')
            
            output_html.append('</div>')  # Close row for word clouds
            
            # Topic distribution visualization
            topic_distribution = lda_model.transform(dtm)
            
            # Calculate dominant topic for each sentence
            dominant_topics = np.argmax(topic_distribution, axis=1)
            
            # Count number of sentences for each dominant topic
            topic_counts = Counter(dominant_topics)
            
            # Prepare data for visualization
            topics = [f"Topic {i+1}" for i in range(n_topics)]
            counts = [topic_counts.get(i, 0) for i in range(n_topics)]
            
            # Create visualization
            fig = plt.figure(figsize=(8, 5))
            bars = plt.bar(topics, counts, color=plt.cm.plasma(np.linspace(0.15, 0.85, n_topics)))
            
            # Add value labels
            for bar in bars:
                height = bar.get_height()
                plt.text(bar.get_x() + bar.get_width()/2., height + 0.1,
                        f'{height}',
                        ha='center', va='bottom')
            
            plt.xlabel('Topic')
            plt.ylabel('Number of Sentences')
            plt.title('Distribution of Dominant Topics Across Sentences')
            plt.tight_layout()
            
            output_html.append('<h4>Topic Distribution</h4>')
            output_html.append(fig_to_html(fig))
            
            # Topic network graph
            output_html.append('<h4>Topic-Term Network</h4>')
            output_html.append('<p>This visualization shows the relationships between topics and their most important terms.</p>')
            
            # Create network graph
            G = nx.Graph()
            
            # Add topic nodes
            for i in range(n_topics):
                G.add_node(f"Topic {i+1}", type='topic', size=1000)
            
            # Add term nodes and edges
            for topic_idx, topic in enumerate(lda_model.components_):
                topic_name = f"Topic {topic_idx+1}"
                
                # Get top terms for this topic
                top_indices = topic.argsort()[:-11:-1]
                
                for i in top_indices:
                    term = feature_names[i]
                    weight = topic[i]
                    
                    # Only add terms with significant weight
                    if weight > 0.01:
                        if not G.has_node(term):
                            G.add_node(term, type='term', size=300)
                        
                        G.add_edge(topic_name, term, weight=weight)
            
            # Create graph visualization
            fig = plt.figure(figsize=(10, 8))
            
            # Position nodes using spring layout
            pos = nx.spring_layout(G, k=0.3, seed=42)
            
            # Draw nodes
            topic_nodes = [node for node in G.nodes() if G.nodes[node]['type'] == 'topic']
            term_nodes = [node for node in G.nodes() if G.nodes[node]['type'] == 'term']
            
            # Draw topic nodes
            nx.draw_networkx_nodes(
                G, pos,
                nodelist=topic_nodes,
                node_color='#E53935',
                node_size=[G.nodes[node]['size'] for node in topic_nodes],
                alpha=0.8
            )
            
            # Draw term nodes
            nx.draw_networkx_nodes(
                G, pos,
                nodelist=term_nodes,
                node_color='#1976D2',
                node_size=[G.nodes[node]['size'] for node in term_nodes],
                alpha=0.6
            )
            
            # Draw edges with varying thickness
            edge_weights = [G[u][v]['weight'] * 5 for u, v in G.edges()]
            nx.draw_networkx_edges(
                G, pos,
                width=edge_weights,
                alpha=0.5,
                edge_color='gray'
            )
            
            # Draw labels
            nx.draw_networkx_labels(
                G, pos,
                font_size=10,
                font_weight='bold'
            )
            
            plt.axis('off')
            plt.tight_layout()
            
            output_html.append(fig_to_html(fig))
            
            # Add note about interpreting results
            output_html.append("""

            <div class="alert alert-info">

                <h4>Interpreting Topic Models</h4>

                <p>Topic modeling is an unsupervised technique that works best with large collections of documents.

                For a single text, especially shorter ones, topics may be less distinct or meaningful.

                The "topics" shown here represent clusters of words that frequently appear together in the text.</p>

                <p>For better topic modeling results:</p>

                <ul>

                    <li>Use longer texts with at least several paragraphs</li>

                    <li>Provide multiple related documents for analysis</li>

                    <li>Consider domain-specific preprocessing</li>

                </ul>

            </div>

            """)
    
    except Exception as e:
        output_html.append(f"""

        <div class="alert alert-danger">

            <h3>Error</h3>

            <p>Failed to analyze topics: {str(e)}</p>

        </div>

        """)
    
    # About Topic Analysis section
    output_html.append("""

    <div class="card mt-4">

        <div class="card-header">

            <h4 class="mb-0">

                <i class="fas fa-info-circle"></i>

                About Topic Analysis

            </h4>

        </div>

        <div class="card-body">

            <h5>What is Topic Analysis?</h5>

            

            <p>Topic analysis, also known as topic modeling or topic extraction, is the process of identifying the main themes

            or topics that occur in a collection of documents. It uses statistical models to discover abstract topics based

            on word distributions throughout the texts.</p>

            

            <h5>Common Approaches:</h5>

            

            <ul>

                <li><b>Term Frequency Analysis</b> - Simple counting of terms to find the most common topics</li>

                <li><b>TF-IDF (Term Frequency-Inverse Document Frequency)</b> - Identifies terms that are distinctive to particular documents or sections</li>

                <li><b>LDA (Latent Dirichlet Allocation)</b> - A probabilistic model that assigns topic distributions to documents</li>

                <li><b>NMF (Non-negative Matrix Factorization)</b> - A linear-algebraic approach to topic discovery</li>

                <li><b>BERTopic</b> - A modern approach that uses BERT embeddings and clustering for topic modeling</li>

            </ul>

            

            <h5>Applications:</h5>

            

            <ul>

                <li><b>Content organization</b> - Categorizing documents by topic</li>

                <li><b>Trend analysis</b> - Tracking how topics evolve over time</li>

                <li><b>Content recommendation</b> - Suggesting related content based on topic similarity</li>

                <li><b>Customer feedback analysis</b> - Understanding main themes in reviews or feedback</li>

                <li><b>Research insights</b> - Identifying research themes in academic papers</li>

            </ul>

        </div>

    </div>

    """)
    
    output_html.append('</div>')  # Close result-area div
    
    return '\n'.join(output_html)