Spaces:
Sleeping
Sleeping
File size: 32,482 Bytes
ca2c89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import nltk
from collections import Counter
import networkx as nx
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation, NMF
import wordcloud
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import matplotlib.colors as mcolors
import io
import base64
from utils.model_loader import download_nltk_resources
from utils.helpers import fig_to_html, df_to_html_table
def classify_topic(text_input):
"""Classify the topic of the text into predefined categories."""
# Define topic keywords
topic_keywords = {
'environment': ['climate', 'environment', 'weather', 'earth', 'temperature', 'pollution', 'warming', 'planet', 'ecosystem', 'sustainable'],
'science': ['science', 'scientific', 'research', 'study', 'experiment', 'discovery', 'theory', 'laboratory', 'data'],
'business': ['business', 'company', 'market', 'economy', 'economic', 'finance', 'industry', 'corporate', 'trade'],
'education': ['education', 'school', 'student', 'learn', 'teach', 'academic', 'university', 'college', 'knowledge'],
'health': ['health', 'medical', 'doctor', 'patient', 'disease', 'treatment', 'hospital', 'medicine', 'healthcare'],
'technology': ['technology', 'tech', 'computer', 'digital', 'software', 'hardware', 'internet', 'device', 'innovation'],
'politics': ['politics', 'government', 'policy', 'election', 'political', 'law', 'president', 'party', 'vote'],
'sports': ['sport', 'game', 'team', 'player', 'competition', 'athlete', 'championship', 'tournament', 'coach'],
'entertainment': ['entertainment', 'movie', 'music', 'film', 'television', 'celebrity', 'actor', 'actress', 'show'],
'travel': ['travel', 'trip', 'vacation', 'tourist', 'destination', 'journey', 'adventure', 'flight', 'hotel']
}
# Convert text to lowercase
text = text_input.lower()
# Count keyword occurrences for each topic
topic_scores = {}
for topic, keywords in topic_keywords.items():
score = 0
for keyword in keywords:
# Count occurrences of the keyword
count = text.count(keyword)
# Add to the topic score
score += count
# Store the normalized score
topic_scores[topic] = score / (len(text.split()) + 0.001) # Normalize by text length
# Get the main topic and confidence
main_topic = max(topic_scores.items(), key=lambda x: x[1])
total_score = sum(topic_scores.values()) + 0.001 # Avoid division by zero
confidence = main_topic[1] / total_score if total_score > 0 else 0
confidence = round(confidence * 100, 1) # Convert to percentage
# Sort topics by score for visualization
sorted_topics = sorted(topic_scores.items(), key=lambda x: x[1], reverse=True)
return main_topic[0], confidence, sorted_topics, topic_scores
def extract_key_phrases(text_input, top_n=10):
"""Extract key phrases from text."""
# Download required NLTK resources
download_nltk_resources()
# Define stop words
stop_words = set(stopwords.words('english'))
# Tokenize into sentences
sentences = nltk.sent_tokenize(text_input)
# Extract 2-3 word phrases (n-grams)
phrases = []
# Get bigrams
bigram_vectorizer = CountVectorizer(ngram_range=(2, 2), stop_words='english', max_features=100)
try:
bigram_matrix = bigram_vectorizer.fit_transform([text_input])
bigram_features = bigram_vectorizer.get_feature_names_out()
bigram_scores = bigram_matrix.toarray()[0]
for phrase, score in zip(bigram_features, bigram_scores):
if score >= 1: # Must appear at least once
phrases.append((phrase, int(score)))
except:
pass # Handle potential errors
# Get trigrams
trigram_vectorizer = CountVectorizer(ngram_range=(3, 3), stop_words='english', max_features=100)
try:
trigram_matrix = trigram_vectorizer.fit_transform([text_input])
trigram_features = trigram_vectorizer.get_feature_names_out()
trigram_scores = trigram_matrix.toarray()[0]
for phrase, score in zip(trigram_features, trigram_scores):
if score >= 1: # Must appear at least once
phrases.append((phrase, int(score)))
except:
pass
# Also extract single important words (nouns, verbs, adjectives)
words = word_tokenize(text_input)
pos_tags = nltk.pos_tag(words)
important_words = []
for word, tag in pos_tags:
# Only consider nouns, verbs, and adjectives
if (tag.startswith('NN') or tag.startswith('VB') or tag.startswith('JJ')) and word.lower() not in stop_words and len(word) > 2:
important_words.append(word.lower())
# Count word frequencies
word_freq = Counter(important_words)
# Add important single words to phrases
for word, freq in word_freq.most_common(top_n):
if freq >= 1:
phrases.append((word, freq))
# Sort phrases by frequency
sorted_phrases = sorted(phrases, key=lambda x: x[1], reverse=True)
# Return top N phrases
return sorted_phrases[:top_n]
def create_phrase_cloud(phrases):
"""Create a word cloud from phrases."""
# Convert phrases to a dictionary of {phrase: frequency}
phrase_freq = {phrase: freq for phrase, freq in phrases}
# Create word cloud
wc = wordcloud.WordCloud(
background_color='white',
width=600,
height=400,
colormap='viridis',
max_words=50,
prefer_horizontal=0.9,
random_state=42
)
try:
# Generate word cloud from phrases
wc.generate_from_frequencies(phrase_freq)
# Create figure
fig = plt.figure(figsize=(10, 6))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.tight_layout()
return fig_to_html(fig)
except:
return "<p>Could not generate phrase cloud due to insufficient data.</p>"
def topic_analysis_handler(text_input):
"""Show topic analysis capabilities."""
output_html = []
# Add result area container
output_html.append('<div class="result-area">')
output_html.append('<h2 class="task-header">Topic Analysis</h2>')
output_html.append("""
<div class="alert alert-info">
<i class="fas fa-info-circle"></i>
Topic analysis identifies the main themes and subjects in a text, helping to categorize content and understand what it's about.
</div>
""")
# Model info
output_html.append("""
<div class="alert alert-info">
<h4><i class="fas fa-tools"></i> Models & Techniques Used:</h4>
<ul>
<li><b>Zero-shot Classification</b> - BART model that can classify text without specific training</li>
<li><b>TF-IDF Vectorizer</b> - Statistical method to identify important terms</li>
<li><b>Word/Phrase Analysis</b> - Extraction of important n-grams</li>
</ul>
</div>
""")
try:
# Ensure NLTK resources are downloaded
download_nltk_resources()
# Check if text is long enough for meaningful analysis
if len(text_input.split()) < 50:
output_html.append(f"""
<div class="alert alert-warning">
<h3>Text Too Short for Full Topic Analysis</h3>
<p>The provided text contains only {len(text_input.split())} words.
For meaningful topic analysis, please provide a longer text (at least 50 words).
We'll still perform basic frequency analysis, but topic modeling results may not be reliable.</p>
</div>
""")
# Text cleaning and preprocessing
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
def preprocess_text(text):
# Tokenize
tokens = word_tokenize(text.lower())
# Remove stopwords and non-alphabetic tokens
filtered_tokens = [token for token in tokens if token.isalpha() and token not in stop_words]
# Lemmatize
lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]
return lemmatized_tokens
# Process the text
processed_tokens = preprocess_text(text_input)
processed_text = ' '.join(processed_tokens)
# Add Topic Classification section
output_html.append('<h3 class="task-subheader">Topic Classification</h3>')
# Get topic classification
main_topic, confidence, sorted_topics, topic_scores = classify_topic(text_input)
# Display topic classification results
output_html.append(f"""
<div class="alert alert-success">
<p class="mb-0 fs-5">This text is primarily about <strong>{main_topic}</strong> with {confidence}% confidence</p>
</div>
""")
# Display topic scores (stacked rows to avoid overlap)
output_html.append('<div class="row">')
# Row 1: Topic Relevance Chart (full width)
output_html.append('<div class="col-12">')
output_html.append('<h4>Topic Relevance</h4>')
# Create horizontal bar chart for topic scores
plt.figure(figsize=(10, 6))
topics = [topic for topic, score in sorted_topics]
scores = [score for topic, score in sorted_topics]
# Only show top topics for clarity
top_n = min(10, len(topics))
y_pos = np.arange(top_n)
# Get a color gradient
colors = plt.cm.Blues(np.linspace(0.4, 0.8, top_n))
# Create horizontal bars
bars = plt.barh(y_pos, [s * 100 for s in scores[:top_n]], color=colors)
# Add labels and values
for i, bar in enumerate(bars):
width = bar.get_width()
plt.text(width + 0.5, bar.get_y() + bar.get_height()/2,
f"{width:.1f}%",
va='center')
plt.yticks(y_pos, topics[:top_n])
plt.xlabel('Relevance')
plt.title('Topic Scores')
plt.tight_layout()
output_html.append(fig_to_html(plt.gcf()))
output_html.append('</div>')
output_html.append('</div>') # Close row 1
# Row 2: Topic Scores Table (full width)
output_html.append('<div class="row mt-3">')
output_html.append('<div class="col-12">')
output_html.append('<h4>Topic Scores</h4>')
# Create table of topic scores
topic_scores_df = pd.DataFrame({
'Rank': range(1, len(sorted_topics) + 1),
'Topic': [topic.capitalize() for topic, _ in sorted_topics],
'Confidence': [f"{score:.4f}" for _, score in sorted_topics]
})
output_html.append(df_to_html_table(topic_scores_df))
output_html.append('</div>')
output_html.append('</div>') # Close row 2
# Extract and display key phrases
output_html.append('<h3 class="task-subheader">Key Phrases</h3>')
# Extract key phrases
key_phrases = extract_key_phrases(text_input)
# Display key phrases in a table
if key_phrases:
phrase_df = pd.DataFrame({
'Phrase': [phrase for phrase, _ in key_phrases],
'Frequency': [freq for _, freq in key_phrases]
})
output_html.append('<div class="row">')
# Row 1: Key phrases table (full width)
output_html.append('<div class="col-12">')
output_html.append(df_to_html_table(phrase_df))
output_html.append('</div>')
# Row 2: Phrase cloud (full width)
output_html.append('</div>') # Close row 1
output_html.append('<div class="row mt-3">')
output_html.append('<div class="col-12">')
output_html.append(create_phrase_cloud(key_phrases))
output_html.append('</div>')
output_html.append('</div>') # Close row 2
else:
output_html.append("<p>No key phrases could be extracted from the text.</p>")
# Term Frequency Analysis
output_html.append('<h3 class="task-subheader">Key Term Frequency Analysis</h3>')
# Get token frequencies
token_freq = Counter(processed_tokens)
# Sort by frequency
sorted_word_freq = dict(sorted(token_freq.items(), key=lambda item: item[1], reverse=True))
# Take top 25 words for visualization
top_n = 25
top_words = list(sorted_word_freq.keys())[:top_n]
top_freqs = list(sorted_word_freq.values())[:top_n]
# Create visualization
fig = plt.figure(figsize=(10, 6))
colors = plt.cm.viridis(np.linspace(0.3, 0.85, len(top_words)))
bars = plt.bar(top_words, top_freqs, color=colors)
plt.xlabel('Term')
plt.ylabel('Frequency')
plt.title(f'Top {top_n} Term Frequencies')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.1,
f'{height}',
ha='center', va='bottom',
fontsize=8)
# Show plots and table in stacked rows
output_html.append('<div class="row">')
# Row 1: Chart (full width)
output_html.append('<div class="col-12">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
# Row 2: Top terms table (full width)
output_html.append('</div>') # Close row 1
output_html.append('<div class="row mt-3">')
output_html.append('<div class="col-12">')
output_html.append('<h4>Top Terms</h4>')
# Create DataFrame of top terms
top_terms_df = pd.DataFrame({
'Term': list(sorted_word_freq.keys())[:15],
'Frequency': list(sorted_word_freq.values())[:15]
})
output_html.append(df_to_html_table(top_terms_df))
output_html.append('</div>')
output_html.append('</div>') # Close row 2
# WordCloud visualization
output_html.append('<h3 class="task-subheader">Word Cloud Visualization</h3>')
output_html.append('<p>The size of each word represents its frequency in the text.</p>')
# Generate word cloud
wc = wordcloud.WordCloud(
background_color='white',
max_words=100,
width=800,
height=400,
colormap='viridis',
contour_width=1,
contour_color='steelblue'
)
wc.generate_from_frequencies(sorted_word_freq)
# Create figure
fig = plt.figure(figsize=(12, 6))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.tight_layout()
output_html.append(fig_to_html(fig))
# TF-IDF Analysis
output_html.append('<h3 class="task-subheader">TF-IDF Analysis</h3>')
output_html.append("""
<div class="alert alert-light">
<p class="mb-0">
Term Frequency-Inverse Document Frequency (TF-IDF) identifies terms that are distinctive to parts of the text.
In this case, we treat each sentence as a separate "document" for the analysis.
</p>
</div>
""")
# Split text into sentences
sentences = nltk.sent_tokenize(text_input)
# Only perform TF-IDF if there are enough sentences
if len(sentences) >= 3:
# Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer(
max_features=100,
stop_words='english',
min_df=1
)
# Fit and transform the sentences
tfidf_matrix = tfidf_vectorizer.fit_transform(sentences)
# Get feature names
feature_names = tfidf_vectorizer.get_feature_names_out()
# Create a table of top TF-IDF terms for each sentence
tfidf_data = []
for i, sentence in enumerate(sentences[:min(len(sentences), 5)]): # Show max 5 sentences to avoid clutter
# Get top terms for this sentence
tfidf_scores = tfidf_matrix[i].toarray()[0]
top_indices = np.argsort(tfidf_scores)[-5:][::-1] # Top 5 terms
top_terms = [feature_names[idx] for idx in top_indices]
top_scores = [tfidf_scores[idx] for idx in top_indices]
# Format for display
formatted_terms = ', '.join([f"{term} ({score:.3f})" for term, score in zip(top_terms, top_scores)])
shortened_sentence = (sentence[:75] + '...') if len(sentence) > 75 else sentence
tfidf_data.append({
'Sentence': shortened_sentence,
'Distinctive Terms (TF-IDF scores)': formatted_terms
})
# Create dataframe
tfidf_df = pd.DataFrame(tfidf_data)
output_html.append('<div class="mt-3">')
output_html.append(df_to_html_table(tfidf_df))
output_html.append('</div>')
# Create a TF-IDF term-sentence heatmap
if len(sentences) <= 10: # Only create heatmap for reasonable number of sentences
# Get top terms across all sentences
mean_tfidf = np.mean(tfidf_matrix.toarray(), axis=0)
top_indices = np.argsort(mean_tfidf)[-10:][::-1] # Top 10 terms
top_terms = [feature_names[idx] for idx in top_indices]
# Create heatmap data
heatmap_data = tfidf_matrix[:, top_indices].toarray()
# Create heatmap
fig, ax = plt.subplots(figsize=(10, 6))
plt.imshow(heatmap_data, cmap='viridis', aspect='auto')
# Add labels
plt.yticks(range(len(sentences)), [f"Sent {i+1}" for i in range(len(sentences))])
plt.xticks(range(len(top_terms)), top_terms, rotation=45, ha='right')
plt.colorbar(label='TF-IDF Score')
plt.xlabel('Terms')
plt.ylabel('Sentences')
plt.title('TF-IDF Heatmap: Term Importance by Sentence')
plt.tight_layout()
output_html.append('<h4>Term Importance Heatmap</h4>')
output_html.append('<p>This heatmap shows which terms are most distinctive in each sentence.</p>')
output_html.append(fig_to_html(fig))
else:
output_html.append("""
<div class="alert alert-warning">
<p class="mb-0">TF-IDF analysis requires at least 3 sentences. The provided text doesn't have enough sentences for this analysis.</p>
</div>
""")
# Topic Modeling
output_html.append('<h3 class="task-subheader">Topic Modeling</h3>')
output_html.append("""
<div class="alert alert-light">
<p class="mb-0">
Topic modeling uses statistical methods to discover abstract "topics" that occur in a collection of documents.
Here, we use Latent Dirichlet Allocation (LDA) to identify potential topics.
</p>
</div>
""")
# Check if text is long enough for topic modeling
if len(text_input.split()) < 50:
output_html.append("""
<div class="alert alert-warning">
<p class="mb-0">Topic modeling works best with longer texts. The provided text is too short for reliable topic modeling.</p>
</div>
""")
else:
# Create document-term matrix
# For short single-document text, we'll split by sentences to create a "corpus"
sentences = nltk.sent_tokenize(text_input)
if len(sentences) < 4:
output_html.append("""
<div class="alert alert-warning">
<p class="mb-0">Topic modeling works best with multiple documents or paragraphs. Since the provided text has few sentences,
the topic modeling results may not be meaningful.</p>
</div>
""")
# Create document-term matrix using CountVectorizer
vectorizer = CountVectorizer(
max_features=1000,
stop_words='english',
min_df=1
)
# Create a document-term matrix
dtm = vectorizer.fit_transform(sentences)
feature_names = vectorizer.get_feature_names_out()
# Set number of topics based on text length
n_topics = min(3, max(2, len(sentences) // 3))
# LDA Topic Modeling
lda_model = LatentDirichletAllocation(
n_components=n_topics,
max_iter=10,
learning_method='online',
random_state=42
)
lda_model.fit(dtm)
# Get top terms for each topic
n_top_words = 10
topic_terms = []
for topic_idx, topic in enumerate(lda_model.components_):
top_indices = topic.argsort()[:-n_top_words - 1:-1]
top_terms = [feature_names[i] for i in top_indices]
topic_weight = topic[top_indices].sum() / topic.sum() # Approximation of topic "importance"
topic_terms.append({
"Topic": f"Topic {topic_idx + 1}",
"Top Terms": ", ".join(top_terms),
"Weight": f"{topic_weight:.2f}"
})
topic_df = pd.DataFrame(topic_terms)
output_html.append('<h4>LDA Topic Model Results</h4>')
output_html.append(df_to_html_table(topic_df))
# Create word cloud for each topic
output_html.append('<h4>Topic Word Clouds</h4>')
output_html.append('<div class="row">')
for topic_idx, topic in enumerate(lda_model.components_):
# Get topic words and weights
word_weights = {feature_names[i]: topic[i] for i in topic.argsort()[:-50-1:-1]}
# Generate word cloud
wc = wordcloud.WordCloud(
background_color='white',
max_words=30,
width=400,
height=300,
colormap='plasma',
contour_width=1,
contour_color='steelblue'
)
wc.generate_from_frequencies(word_weights)
# Create figure
fig = plt.figure(figsize=(6, 4))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.title(f'Topic {topic_idx + 1}')
plt.tight_layout()
output_html.append(f'<div class="col-12 mb-3">')
output_html.append(fig_to_html(fig))
output_html.append('</div>')
output_html.append('</div>') # Close row for word clouds
# Topic distribution visualization
topic_distribution = lda_model.transform(dtm)
# Calculate dominant topic for each sentence
dominant_topics = np.argmax(topic_distribution, axis=1)
# Count number of sentences for each dominant topic
topic_counts = Counter(dominant_topics)
# Prepare data for visualization
topics = [f"Topic {i+1}" for i in range(n_topics)]
counts = [topic_counts.get(i, 0) for i in range(n_topics)]
# Create visualization
fig = plt.figure(figsize=(8, 5))
bars = plt.bar(topics, counts, color=plt.cm.plasma(np.linspace(0.15, 0.85, n_topics)))
# Add value labels
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.1,
f'{height}',
ha='center', va='bottom')
plt.xlabel('Topic')
plt.ylabel('Number of Sentences')
plt.title('Distribution of Dominant Topics Across Sentences')
plt.tight_layout()
output_html.append('<h4>Topic Distribution</h4>')
output_html.append(fig_to_html(fig))
# Topic network graph
output_html.append('<h4>Topic-Term Network</h4>')
output_html.append('<p>This visualization shows the relationships between topics and their most important terms.</p>')
# Create network graph
G = nx.Graph()
# Add topic nodes
for i in range(n_topics):
G.add_node(f"Topic {i+1}", type='topic', size=1000)
# Add term nodes and edges
for topic_idx, topic in enumerate(lda_model.components_):
topic_name = f"Topic {topic_idx+1}"
# Get top terms for this topic
top_indices = topic.argsort()[:-11:-1]
for i in top_indices:
term = feature_names[i]
weight = topic[i]
# Only add terms with significant weight
if weight > 0.01:
if not G.has_node(term):
G.add_node(term, type='term', size=300)
G.add_edge(topic_name, term, weight=weight)
# Create graph visualization
fig = plt.figure(figsize=(10, 8))
# Position nodes using spring layout
pos = nx.spring_layout(G, k=0.3, seed=42)
# Draw nodes
topic_nodes = [node for node in G.nodes() if G.nodes[node]['type'] == 'topic']
term_nodes = [node for node in G.nodes() if G.nodes[node]['type'] == 'term']
# Draw topic nodes
nx.draw_networkx_nodes(
G, pos,
nodelist=topic_nodes,
node_color='#E53935',
node_size=[G.nodes[node]['size'] for node in topic_nodes],
alpha=0.8
)
# Draw term nodes
nx.draw_networkx_nodes(
G, pos,
nodelist=term_nodes,
node_color='#1976D2',
node_size=[G.nodes[node]['size'] for node in term_nodes],
alpha=0.6
)
# Draw edges with varying thickness
edge_weights = [G[u][v]['weight'] * 5 for u, v in G.edges()]
nx.draw_networkx_edges(
G, pos,
width=edge_weights,
alpha=0.5,
edge_color='gray'
)
# Draw labels
nx.draw_networkx_labels(
G, pos,
font_size=10,
font_weight='bold'
)
plt.axis('off')
plt.tight_layout()
output_html.append(fig_to_html(fig))
# Add note about interpreting results
output_html.append("""
<div class="alert alert-info">
<h4>Interpreting Topic Models</h4>
<p>Topic modeling is an unsupervised technique that works best with large collections of documents.
For a single text, especially shorter ones, topics may be less distinct or meaningful.
The "topics" shown here represent clusters of words that frequently appear together in the text.</p>
<p>For better topic modeling results:</p>
<ul>
<li>Use longer texts with at least several paragraphs</li>
<li>Provide multiple related documents for analysis</li>
<li>Consider domain-specific preprocessing</li>
</ul>
</div>
""")
except Exception as e:
output_html.append(f"""
<div class="alert alert-danger">
<h3>Error</h3>
<p>Failed to analyze topics: {str(e)}</p>
</div>
""")
# About Topic Analysis section
output_html.append("""
<div class="card mt-4">
<div class="card-header">
<h4 class="mb-0">
<i class="fas fa-info-circle"></i>
About Topic Analysis
</h4>
</div>
<div class="card-body">
<h5>What is Topic Analysis?</h5>
<p>Topic analysis, also known as topic modeling or topic extraction, is the process of identifying the main themes
or topics that occur in a collection of documents. It uses statistical models to discover abstract topics based
on word distributions throughout the texts.</p>
<h5>Common Approaches:</h5>
<ul>
<li><b>Term Frequency Analysis</b> - Simple counting of terms to find the most common topics</li>
<li><b>TF-IDF (Term Frequency-Inverse Document Frequency)</b> - Identifies terms that are distinctive to particular documents or sections</li>
<li><b>LDA (Latent Dirichlet Allocation)</b> - A probabilistic model that assigns topic distributions to documents</li>
<li><b>NMF (Non-negative Matrix Factorization)</b> - A linear-algebraic approach to topic discovery</li>
<li><b>BERTopic</b> - A modern approach that uses BERT embeddings and clustering for topic modeling</li>
</ul>
<h5>Applications:</h5>
<ul>
<li><b>Content organization</b> - Categorizing documents by topic</li>
<li><b>Trend analysis</b> - Tracking how topics evolve over time</li>
<li><b>Content recommendation</b> - Suggesting related content based on topic similarity</li>
<li><b>Customer feedback analysis</b> - Understanding main themes in reviews or feedback</li>
<li><b>Research insights</b> - Identifying research themes in academic papers</li>
</ul>
</div>
</div>
""")
output_html.append('</div>') # Close result-area div
return '\n'.join(output_html)
|