import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from transformers import pipeline
import nltk
from collections import Counter
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from utils.model_loader import load_qa_pipeline
from utils.helpers import fig_to_html, df_to_html_table
def question_answering_handler(context_text, question, answer_type="extractive", confidence_threshold=0.5):
"""Show question answering capabilities with comprehensive analysis."""
output_html = []
# Add result area container
output_html.append('
')
output_html.append('')
output_html.append("""
Question Answering (QA) systems extract or generate answers to questions based on a given context or knowledge base.
This system can handle both extractive (finding answers in text) and abstractive (generating new answers) approaches.
""")
# Model info
output_html.append("""
Models & Techniques Used:
- RoBERTa-SQuAD2 - Fine-tuned transformer model for extractive QA (F1: ~83.7 on SQuAD 2.0)
- BERT-based QA - Bidirectional encoder representations for understanding context
- TF-IDF Similarity - Traditional approach for finding relevant text spans
- Confidence Scoring - Model uncertainty estimation for answer reliability
""")
try:
# Validate inputs
if not context_text or not context_text.strip():
output_html.append('
⚠️ Please provide a context text for question answering.
')
output_html.append('
')
return "\n".join(output_html)
if not question or not question.strip():
output_html.append('⚠️ Please provide a question to answer.
')
output_html.append('')
return "\n".join(output_html)
# Display input information
output_html.append('')
context_stats = {
"Context Length": len(context_text),
"Word Count": len(context_text.split()),
"Sentence Count": len(nltk.sent_tokenize(context_text)),
"Question Length": len(question),
"Question Words": len(question.split())
}
stats_df = pd.DataFrame(list(context_stats.items()), columns=['Metric', 'Value'])
output_html.append('Input Statistics
')
output_html.append(df_to_html_table(stats_df))
# Question Analysis
output_html.append('')
# Classify question type
question_lower = question.lower().strip()
question_type = classify_question_type(question_lower)
output_html.append(f"""
Question: {question}
Type: {question_type['type']}
Expected Answer: {question_type['expected']}
Keywords: {', '.join(question_type['keywords'])}
""")
# Extractive Question Answering using Transformer
output_html.append('')
try:
qa_pipeline = load_qa_pipeline()
# Get answer from the model
result = qa_pipeline(question=question, context=context_text)
answer = result['answer']
confidence = result['score']
start_pos = result['start']
end_pos = result['end']
# Create confidence visualization
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
# Confidence bar
colors = ['red' if confidence < 0.3 else 'orange' if confidence < 0.7 else 'green']
bars = ax.barh(['Confidence'], [confidence], color=colors[0])
ax.set_xlim(0, 1)
ax.set_xlabel('Confidence Score')
ax.set_title('Answer Confidence')
# Add confidence threshold line
ax.axvline(x=confidence_threshold, color='red', linestyle='--', label=f'Threshold ({confidence_threshold})')
ax.legend()
# Add value labels
for bar in bars:
width = bar.get_width()
ax.text(width/2, bar.get_y() + bar.get_height()/2,
f'{width:.3f}', ha='center', va='center', fontweight='bold')
plt.tight_layout()
output_html.append(fig_to_html(fig))
plt.close()
# Display answer with context highlighting
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
output_html.append(f"""
Answer: {answer}
Confidence: {confidence:.3f} ({confidence_status})
Position in Text: Characters {start_pos}-{end_pos}
""")
# Show context with answer highlighted
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
output_html.append(f"""
""")
except Exception as e:
output_html.append(f'❌ Error in transformer QA: {str(e)}
')
# Alternative: TF-IDF based answer extraction
output_html.append('')
try:
tfidf_answer = extract_answer_tfidf(context_text, question)
output_html.append(f"""
🔍 TF-IDF Based Answer
Most Relevant Sentence: {tfidf_answer['sentence']}
Similarity Score: {tfidf_answer['score']:.3f}
Method: Cosine similarity between question and context sentences using TF-IDF vectors
""")
except Exception as e:
output_html.append(f'❌ Error in TF-IDF QA: {str(e)}
')
# Answer Quality Assessment
output_html.append('')
if 'confidence' in locals():
quality_metrics = assess_answer_quality(question, answer, confidence, context_text)
# Create quality assessment visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Quality metrics radar chart
categories = list(quality_metrics.keys())
values = list(quality_metrics.values())
ax1.bar(categories, values, color=['#4CAF50', '#2196F3', '#FF9800', '#9C27B0'])
ax1.set_ylim(0, 1)
ax1.set_title('Answer Quality Metrics')
ax1.set_ylabel('Score')
plt.setp(ax1.get_xticklabels(), rotation=45, ha='right')
# Overall quality score
overall_score = sum(values) / len(values)
quality_label = "Excellent" if overall_score >= 0.8 else "Good" if overall_score >= 0.6 else "Fair" if overall_score >= 0.4 else "Poor"
ax2.pie([overall_score, 1-overall_score], labels=[f'{quality_label}\n({overall_score:.2f})', 'Room for Improvement'],
colors=['#4CAF50', '#E0E0E0'], startangle=90)
ax2.set_title('Overall Answer Quality')
plt.tight_layout()
output_html.append(fig_to_html(fig))
plt.close()
# Quality metrics table
quality_df = pd.DataFrame([
{'Metric': 'Confidence', 'Score': f"{quality_metrics['Confidence']:.3f}", 'Description': 'Model confidence in the answer'},
{'Metric': 'Relevance', 'Score': f"{quality_metrics['Relevance']:.3f}", 'Description': 'Semantic similarity to question'},
{'Metric': 'Completeness', 'Score': f"{quality_metrics['Completeness']:.3f}", 'Description': 'Answer length appropriateness'},
{'Metric': 'Context Match', 'Score': f"{quality_metrics['Context_Match']:.3f}", 'Description': 'How well answer fits context'}
])
output_html.append('Quality Assessment Details
')
output_html.append(df_to_html_table(quality_df))
# Question-Answer Pairs Suggestions
output_html.append('')
try:
suggested_questions = generate_followup_questions(context_text, question, answer if 'answer' in locals() else "")
output_html.append('')
output_html.append('
💡 Follow-up Questions:
')
output_html.append('
')
for i, q in enumerate(suggested_questions, 1):
output_html.append(f'- Q{i}: {q}
')
output_html.append('
')
output_html.append('
')
except Exception as e:
output_html.append(f'❌ Error generating suggestions: {str(e)}
')
except Exception as e:
output_html.append(f'❌ Unexpected error: {str(e)}
')
output_html.append('')
# Add About section at the end
output_html.append(get_about_section())
return "\n".join(output_html)
def classify_question_type(question):
"""Classify the type of question and expected answer format."""
question = question.lower().strip()
# Question word patterns
patterns = {
'what': {'type': 'Definition/Fact', 'expected': 'Entity, concept, or description'},
'who': {'type': 'Person', 'expected': 'Person name or group'},
'when': {'type': 'Time', 'expected': 'Date, time, or temporal expression'},
'where': {'type': 'Location', 'expected': 'Place, location, or spatial reference'},
'why': {'type': 'Reason/Cause', 'expected': 'Explanation or causal relationship'},
'how': {'type': 'Method/Process', 'expected': 'Process, method, or manner'},
'which': {'type': 'Selection', 'expected': 'Specific choice from options'},
'how much': {'type': 'Quantity', 'expected': 'Numerical amount or quantity'},
'how many': {'type': 'Count', 'expected': 'Numerical count'},
'is': {'type': 'Yes/No', 'expected': 'Boolean answer'},
'are': {'type': 'Yes/No', 'expected': 'Boolean answer'},
'can': {'type': 'Ability/Possibility', 'expected': 'Yes/No with explanation'},
'will': {'type': 'Future/Prediction', 'expected': 'Future state or prediction'},
'did': {'type': 'Past Action', 'expected': 'Yes/No about past events'}
}
# Extract keywords from question
words = question.split()
keywords = [word for word in words if len(word) > 2 and word not in ['the', 'and', 'but', 'for']]
# Determine question type
for pattern, info in patterns.items():
if question.startswith(pattern):
return {
'type': info['type'],
'expected': info['expected'],
'keywords': keywords[:5] # Top 5 keywords
}
# Default classification
return {
'type': 'General',
'expected': 'Text span or explanation',
'keywords': keywords[:5]
}
def extract_answer_tfidf(context, question):
"""Extract answer using TF-IDF similarity."""
# Split context into sentences
sentences = nltk.sent_tokenize(context)
if len(sentences) == 0:
return {'sentence': 'No sentences found', 'score': 0.0}
# Create TF-IDF vectors
vectorizer = TfidfVectorizer(stop_words='english', lowercase=True)
# Combine question with sentences for vectorization
texts = [question] + sentences
tfidf_matrix = vectorizer.fit_transform(texts)
# Calculate cosine similarity between question and each sentence
question_vector = tfidf_matrix[0:1]
sentence_vectors = tfidf_matrix[1:]
similarities = cosine_similarity(question_vector, sentence_vectors).flatten()
# Find the most similar sentence
best_idx = np.argmax(similarities)
best_sentence = sentences[best_idx]
best_score = similarities[best_idx]
return {
'sentence': best_sentence,
'score': best_score
}
def highlight_answer_in_context(context, start_pos, end_pos):
"""Highlight the answer span in the context."""
before = context[:start_pos]
answer = context[start_pos:end_pos]
after = context[end_pos:]
highlighted = f'{before}{answer}{after}'
return highlighted
def assess_answer_quality(question, answer, confidence, context):
"""Assess the quality of the extracted answer."""
metrics = {}
# Confidence score (from model)
metrics['Confidence'] = confidence
# Relevance (simple keyword overlap)
question_words = set(question.lower().split())
answer_words = set(answer.lower().split())
overlap = len(question_words.intersection(answer_words))
metrics['Relevance'] = min(overlap / max(len(question_words), 1), 1.0)
# Completeness (answer length appropriateness)
answer_length = len(answer.split())
if answer_length == 0:
metrics['Completeness'] = 0.0
elif answer_length < 3:
metrics['Completeness'] = 0.6
elif answer_length <= 20:
metrics['Completeness'] = 1.0
else:
metrics['Completeness'] = 0.8 # Very long answers might be too verbose
# Context match (how well the answer fits in context)
answer_in_context = answer.lower() in context.lower()
metrics['Context_Match'] = 1.0 if answer_in_context else 0.5
return metrics
def generate_followup_questions(context, original_question, answer):
"""Generate relevant follow-up questions based on the context and answer."""
suggestions = []
# Extract key entities and concepts from context
words = context.split()
# Template-based question generation
templates = [
f"What else can you tell me about {answer}?",
"Can you provide more details about this topic?",
"What are the implications of this information?",
"How does this relate to other concepts mentioned?",
"What evidence supports this answer?"
]
# Add context-specific questions
if "when" not in original_question.lower():
suggestions.append("When did this happen?")
if "where" not in original_question.lower():
suggestions.append("Where did this take place?")
if "why" not in original_question.lower():
suggestions.append("Why is this significant?")
if "how" not in original_question.lower():
suggestions.append("How does this work?")
# Combine and limit suggestions
all_suggestions = templates + suggestions
return all_suggestions[:5] # Return top 5 suggestions
def qa_api_handler(context, question):
"""API handler for question answering that returns structured data."""
try:
qa_pipeline = load_qa_pipeline()
result = qa_pipeline(question=question, context=context)
return {
"answer": result['answer'],
"confidence": result['score'],
"start_position": result['start'],
"end_position": result['end'],
"success": True,
"error": None
}
except Exception as e:
return {
"answer": "",
"confidence": 0.0,
"start_position": 0,
"end_position": 0,
"success": False,
"error": str(e)
}
def process_question_with_context(context_text, question):
"""Process a question with the given context and return a formatted result."""
if not context_text or not context_text.strip():
return {
"success": False,
"error": "No context text provided",
"html": '⚠️ No context text provided.
'
}
if not question or not question.strip():
return {
"success": False,
"error": "No question provided",
"html": '⚠️ Please enter a question.
'
}
try:
qa_pipeline = load_qa_pipeline()
result = qa_pipeline(question=question, context=context_text)
answer = result['answer']
confidence = result['score']
start_pos = result['start']
end_pos = result['end']
# Determine confidence level
confidence_status = "High" if confidence >= 0.7 else "Medium" if confidence >= 0.3 else "Low"
confidence_color = "#4CAF50" if confidence >= 0.7 else "#FF9800" if confidence >= 0.3 else "#F44336"
# Highlight answer in context
highlighted_context = highlight_answer_in_context(context_text, start_pos, end_pos)
# Create formatted HTML result
html_result = f"""
Question: {question}
Answer: {answer}
Confidence: {confidence:.3f} ({confidence_status})
📄 Context with Highlighted Answer:
{highlighted_context}
Quality Assessment:
- Confidence: {confidence_status} ({confidence:.1%})
- Answer found at position: {start_pos}-{end_pos}
- Answer length: {len(answer.split())} words
"""
return {
"success": True,
"answer": answer,
"confidence": confidence,
"html": html_result
}
except Exception as e:
error_html = f'❌ Error processing question: {str(e)}
'
return {
"success": False,
"error": str(e),
"html": error_html
}
def get_about_section():
"""Generate the About Question Answering section"""
return """
What is Question Answering?
Question Answering (QA) is an NLP technique that automatically finds answers to questions posed in natural language. It involves understanding both the question and the context to extract or generate relevant answers.
Applications of Question Answering:
- Customer Support - Automatically answering customer queries from knowledge bases
- Educational Systems - Helping students find answers in textbooks and materials
- Information Retrieval - Extracting specific information from large documents
- Virtual Assistants - Powering AI assistants like Siri, Alexa, and Google Assistant
- Research Tools - Helping researchers quickly find relevant information in papers
- Legal Analysis - Finding relevant clauses and information in legal documents
How It Works:
Our system uses transformer-based models to understand questions and find relevant answers in the provided context. It analyzes question types, extracts key information, and provides confidence scores for the answers found.
"""