import matplotlib.pyplot as plt import pandas as pd import nltk import re from collections import Counter from nltk.tokenize import word_tokenize, sent_tokenize import spacy from utils.model_loader import load_spacy, download_nltk_resources from utils.helpers import fig_to_html, df_to_html_table def tokenization_handler(text_input): """Show tokenization capabilities.""" output_html = [] # Add result area container output_html.append('
') output_html.append('

Tokenization

') output_html.append("""
Tokenization is the process of breaking text into smaller units called tokens, which can be words, characters, or subwords.
""") # Model info output_html.append("""

Tools Used:

""") try: # Ensure NLTK resources are downloaded download_nltk_resources() # Original Text output_html.append('

Original Text

') output_html.append(f'
{text_input}
') # Word Tokenization output_html.append('

Word Tokenization

') output_html.append('

Breaking text into individual words and punctuation marks.

') # NLTK Word Tokenization nltk_tokens = word_tokenize(text_input) # Format tokens token_html = "" for token in nltk_tokens: token_html += f'{token}' output_html.append(f"""
{token_html}
""") # Token statistics token_count = len(nltk_tokens) unique_tokens = len(set([t.lower() for t in nltk_tokens])) alpha_only = sum(1 for t in nltk_tokens if t.isalpha()) numeric = sum(1 for t in nltk_tokens if t.isnumeric()) punct = sum(1 for t in nltk_tokens if all(c in '.,;:!?-"\'()[]{}' for c in t)) output_html.append(f"""
{token_count}
Total Tokens
{unique_tokens}
Unique Tokens
{alpha_only}
Alphabetic
{numeric}
Numeric
{punct}
Punctuation
""") # Sentence Tokenization output_html.append('

Sentence Tokenization

') output_html.append('

Dividing text into individual sentences.

') # NLTK Sentence Tokenization nltk_sentences = sent_tokenize(text_input) # Format sentences sentence_html = "" for i, sentence in enumerate(nltk_sentences): sentence_html += f'
{i+1} {sentence}
' output_html.append(f"""
{sentence_html}
""") output_html.append(f'

Text contains {len(nltk_sentences)} sentences with an average of {token_count / len(nltk_sentences):.1f} tokens per sentence.

') # Advanced Tokenization with spaCy output_html.append('

Linguistic Tokenization (spaCy)

') output_html.append('

spaCy provides more linguistically-aware tokenization with additional token properties.

') # Load spaCy model nlp = load_spacy() doc = nlp(text_input) # Create token table token_data = [] for token in doc: token_data.append({ 'Text': token.text, 'Lemma': token.lemma_, 'POS': token.pos_, 'Tag': token.tag_, 'Dep': token.dep_, 'Shape': token.shape_, 'Alpha': token.is_alpha, 'Stop': token.is_stop }) token_df = pd.DataFrame(token_data) # Display interactive table with expandable rows output_html.append("""
""") for token in doc: # Determine row color based on token type row_class = "" if token.is_stop: row_class = "table-danger" # Light red for stopwords elif token.pos_ == "VERB": row_class = "table-success" # Light green for verbs elif token.pos_ == "NOUN" or token.pos_ == "PROPN": row_class = "table-primary" # Light blue for nouns elif token.pos_ == "ADJ": row_class = "table-warning" # Light yellow for adjectives output_html.append(f""" """) output_html.append("""
Token Lemma POS Tag Dependency Properties
{token.text} {token.lemma_} {token.pos_} {token.tag_} {token.dep_} {'Alpha' if token.is_alpha else 'Non-alpha'} {'Stopword' if token.is_stop else 'Content'} Shape: {token.shape_}
""") # Create visualization for POS distribution pos_counts = Counter([token.pos_ for token in doc]) # Create bar chart for POS distribution fig = plt.figure(figsize=(10, 6)) plt.bar(pos_counts.keys(), pos_counts.values(), color='#1976D2') plt.xlabel('Part of Speech') plt.ylabel('Count') plt.title('Part-of-Speech Distribution') plt.xticks(rotation=45) plt.tight_layout() output_html.append('

Token Distribution by Part of Speech

') output_html.append(fig_to_html(fig)) # Subword Tokenization output_html.append('

Subword Tokenization (WordPiece/BPE)

') output_html.append("""

Subword tokenization breaks words into smaller units to handle rare words and morphologically rich languages. This technique is widely used in modern transformer models like BERT, GPT, etc.

""") try: from transformers import BertTokenizer, GPT2Tokenizer # Load tokenizers bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # Tokenize with BERT bert_tokens = bert_tokenizer.tokenize(text_input) # Tokenize with GPT-2 # GPT-2 doesn't have a special tokenize method like BERT, so we encode and decode gpt2_encoding = gpt2_tokenizer.encode(text_input) gpt2_tokens = [gpt2_tokenizer.decode([token]).strip() for token in gpt2_encoding] # BERT WordPiece Section output_html.append('

BERT WordPiece

') output_html.append('

BERT uses WordPiece tokenization which marks subword units with ##.

') # Create token display output_html.append('
') output_html.append('
') for token in bert_tokens: if token.startswith("##"): output_html.append(f'{token}') else: output_html.append(f'{token}') output_html.append('
') output_html.append(f'

Total BERT tokens: {len(bert_tokens)}

') # GPT-2 BPE Section output_html.append('

GPT-2 BPE

') output_html.append('

GPT-2 uses Byte-Pair Encoding (BPE) tokenization where Ġ represents a space before the token.

') output_html.append('
') output_html.append('
') for token in gpt2_tokens: if token.startswith("Ġ"): output_html.append(f'{token}') else: output_html.append(f'{token}') output_html.append('
') output_html.append(f'

Total GPT-2 tokens: {len(gpt2_tokens)}

') # Compare token counts output_html.append('

Token Count Comparison

') token_count_data = { 'Tokenizer': ['Words (spaces)', 'NLTK', 'spaCy', 'BERT WordPiece', 'GPT-2 BPE'], 'Token Count': [ len(text_input.split()), len(nltk_tokens), len(doc), len(bert_tokens), len(gpt2_tokens) ] } token_count_df = pd.DataFrame(token_count_data) # Create comparison chart fig = plt.figure(figsize=(10, 6)) bars = plt.bar(token_count_df['Tokenizer'], token_count_df['Token Count'], color=['#BBDEFB', '#90CAF9', '#64B5F6', '#42A5F5', '#2196F3']) # Add value labels on top of bars for bar in bars: height = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2., height + 0.5, f'{height}', ha='center', va='bottom') plt.ylabel('Token Count') plt.title('Tokenization Comparison by Method') plt.ylim(0, max(token_count_df['Token Count']) * 1.1) # Add some headroom for labels plt.tight_layout() output_html.append(fig_to_html(fig)) # Add token length distribution analysis output_html.append('

Token Length Distribution

') token_lengths = [len(token) for token in nltk_tokens] fig = plt.figure(figsize=(10, 6)) plt.hist(token_lengths, bins=range(1, max(token_lengths) + 2), color='#4CAF50', alpha=0.7) plt.xlabel('Token Length') plt.ylabel('Frequency') plt.title('Token Length Distribution') plt.grid(axis='y', alpha=0.3) plt.tight_layout() output_html.append(fig_to_html(fig)) # Add tokenization statistics summary avg_token_length = sum(token_lengths) / len(token_lengths) if token_lengths else 0 output_html.append(f"""

Tokenization Statistics

{token_count}

Total Tokens

{avg_token_length:.2f}

Average Token Length

{token_count / len(nltk_sentences):.2f}

Tokens per Sentence

""") except Exception as e: output_html.append(f"""

Subword Tokenization Error

Failed to load transformer tokenizers: {str(e)}

The transformers library may not be installed or there might be network issues when downloading models.

""") except Exception as e: output_html.append(f"""

Error

Failed to process tokenization: {str(e)}

""") # About Tokenization section output_html.append("""

About Tokenization

What is Tokenization?

Tokenization is the process of breaking down text into smaller units called tokens. These tokens can be words, subwords, characters, or symbols, depending on the approach. It's typically the first step in most NLP pipelines.

Types of Tokenization:
  • Word Tokenization - Splits text on whitespace and punctuation (with various rules)
  • Sentence Tokenization - Divides text into sentences using punctuation and other rules
  • Subword Tokenization - Splits words into meaningful subunits (WordPiece, BPE, SentencePiece)
  • Character Tokenization - Treats each character as a separate token
Why Subword Tokenization?

Modern NLP models use subword tokenization because:

  • It handles out-of-vocabulary words better
  • It represents rare words by decomposing them
  • It works well for morphologically rich languages
  • It balances vocabulary size and token length
""") output_html.append('
') # Close result-area div return '\n'.join(output_html)