Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,45 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
model_name = "cognitivecomputations/dolphin-2.5-mixtral-8x7b"
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
model_name,
|
| 10 |
torch_dtype=torch.float16,
|
| 11 |
-
device_map="auto"
|
|
|
|
| 12 |
)
|
| 13 |
|
| 14 |
-
#
|
| 15 |
pipe = pipeline(
|
| 16 |
"text-generation",
|
| 17 |
model=model,
|
| 18 |
tokenizer=tokenizer,
|
| 19 |
torch_dtype=torch.float16,
|
| 20 |
-
device_map="auto"
|
| 21 |
)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def generate_text(system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty):
|
| 24 |
-
# Format the prompt with the custom system message
|
| 25 |
formatted_prompt = f"""<|im_start|>system
|
| 26 |
{system_message}<|im_end|>
|
| 27 |
<|im_start|>user
|
|
@@ -29,7 +47,7 @@ def generate_text(system_message, user_message, max_length, temperature, top_p,
|
|
| 29 |
<|im_start|>assistant
|
| 30 |
"""
|
| 31 |
|
| 32 |
-
# Generate the response
|
| 33 |
outputs = pipe(
|
| 34 |
formatted_prompt,
|
| 35 |
max_new_tokens=max_length,
|
|
@@ -41,15 +59,14 @@ def generate_text(system_message, user_message, max_length, temperature, top_p,
|
|
| 41 |
pad_token_id=tokenizer.eos_token_id
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# Extract the generated text
|
| 45 |
response = outputs[0]["generated_text"]
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
response = response
|
| 49 |
|
| 50 |
return response
|
| 51 |
|
| 52 |
-
#
|
| 53 |
css = """
|
| 54 |
.gradio-container {
|
| 55 |
max-width: 900px !important;
|
|
@@ -74,26 +91,32 @@ css = """
|
|
| 74 |
padding: 12px;
|
| 75 |
margin-bottom: 12px;
|
| 76 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
"""
|
| 78 |
|
|
|
|
| 79 |
with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
| 80 |
gr.Markdown("""# 🐬 Dolphin-2.5-Mixtral-8x7b Chat Interface
|
| 81 |
Chat with the powerful Dolphin-2.5-Mixtral-8x7b model from Hugging Face
|
| 82 |
""")
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
with gr.Row():
|
| 85 |
with gr.Column(scale=2):
|
| 86 |
-
# System Message
|
| 87 |
with gr.Group():
|
| 88 |
gr.Markdown("### System Message (AI's Personality/Instructions)")
|
| 89 |
system_message = gr.Textbox(
|
| 90 |
-
value=
|
| 91 |
label="System Message",
|
| 92 |
lines=3,
|
| 93 |
elem_classes=["message-box", "system-box"]
|
| 94 |
)
|
| 95 |
|
| 96 |
-
# User Message
|
| 97 |
with gr.Group():
|
| 98 |
gr.Markdown("### Your Message")
|
| 99 |
user_message = gr.Textbox(
|
|
@@ -103,25 +126,19 @@ with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
|
| 103 |
elem_classes=["message-box", "user-box"]
|
| 104 |
)
|
| 105 |
|
| 106 |
-
# Generation Parameters
|
| 107 |
with gr.Group(elem_classes=["param-box"]):
|
| 108 |
gr.Markdown("### Generation Parameters")
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 115 |
-
with gr.Row():
|
| 116 |
-
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
|
| 117 |
|
| 118 |
-
# Buttons
|
| 119 |
with gr.Row():
|
| 120 |
submit_btn = gr.Button("Generate Response", variant="primary")
|
| 121 |
clear_btn = gr.Button("Clear All")
|
| 122 |
|
| 123 |
with gr.Column(scale=3):
|
| 124 |
-
# Assistant Response
|
| 125 |
with gr.Group():
|
| 126 |
gr.Markdown("### Assistant Response")
|
| 127 |
assistant_response = gr.Textbox(
|
|
@@ -131,7 +148,6 @@ with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
|
| 131 |
elem_classes=["message-box", "assistant-box"]
|
| 132 |
)
|
| 133 |
|
| 134 |
-
# Chat History
|
| 135 |
with gr.Group():
|
| 136 |
gr.Markdown("### Conversation History")
|
| 137 |
chat_history = gr.Chatbot(
|
|
@@ -140,7 +156,10 @@ with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
|
| 140 |
elem_classes=["message-box"]
|
| 141 |
)
|
| 142 |
|
| 143 |
-
#
|
|
|
|
|
|
|
|
|
|
| 144 |
submit_btn.click(
|
| 145 |
fn=generate_text,
|
| 146 |
inputs=[system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty],
|
|
@@ -151,12 +170,13 @@ with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
|
| 151 |
[chat_history, user_message]
|
| 152 |
)
|
| 153 |
|
|
|
|
| 154 |
clear_btn.click(
|
| 155 |
lambda: [""] * 3 + [512, 0.7, 0.95, 50, 1.1, [], ""],
|
| 156 |
-
outputs=[system_message, user_message, assistant_response, max_length, temperature, top_p, top_k, repetition_penalty, chat_history
|
| 157 |
)
|
| 158 |
-
|
| 159 |
-
#
|
| 160 |
user_message.submit(
|
| 161 |
fn=generate_text,
|
| 162 |
inputs=[system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty],
|
|
@@ -167,6 +187,12 @@ with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
|
| 167 |
[chat_history, user_message]
|
| 168 |
)
|
| 169 |
|
| 170 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
if __name__ == "__main__":
|
| 172 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
import torch
|
| 4 |
+
import tiktoken # Use this if the tokenizer is based on tiktoken (for some models)
|
| 5 |
|
| 6 |
+
# Model and Tokenizer loading
|
| 7 |
model_name = "cognitivecomputations/dolphin-2.5-mixtral-8x7b"
|
| 8 |
+
|
| 9 |
+
# Try loading with AutoTokenizer (this should ideally work with many models)
|
| 10 |
+
try:
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
except Exception as e:
|
| 13 |
+
print(f"AutoTokenizer loading failed: {e}")
|
| 14 |
+
print("Attempting to use tiktoken directly.")
|
| 15 |
+
# If AutoTokenizer fails, try using tiktoken tokenizer explicitly
|
| 16 |
+
tokenizer = tiktoken.get_encoding("cl100k_base") # Default encoding for tiktoken
|
| 17 |
+
|
| 18 |
+
# Load model with float16 precision and auto device mapping
|
| 19 |
model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
model_name,
|
| 21 |
torch_dtype=torch.float16,
|
| 22 |
+
device_map="auto", # Automatically place model on GPUs if available
|
| 23 |
+
low_cpu_mem_usage=True # Efficient CPU memory usage
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Optimized pipeline (created once)
|
| 27 |
pipe = pipeline(
|
| 28 |
"text-generation",
|
| 29 |
model=model,
|
| 30 |
tokenizer=tokenizer,
|
| 31 |
torch_dtype=torch.float16,
|
| 32 |
+
device_map="auto" # Automatically distribute model layers across devices
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# Function to clean text from special tokens or unwanted characters
|
| 36 |
+
def clean_text(text):
|
| 37 |
+
# Clean unwanted tokens and formatting
|
| 38 |
+
text = text.replace("<|im_start|>system", "").replace("<|im_end|>", "").strip()
|
| 39 |
+
return text
|
| 40 |
+
|
| 41 |
+
# Generate text using the model
|
| 42 |
def generate_text(system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty):
|
|
|
|
| 43 |
formatted_prompt = f"""<|im_start|>system
|
| 44 |
{system_message}<|im_end|>
|
| 45 |
<|im_start|>user
|
|
|
|
| 47 |
<|im_start|>assistant
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
# Generate the response using the model pipeline
|
| 51 |
outputs = pipe(
|
| 52 |
formatted_prompt,
|
| 53 |
max_new_tokens=max_length,
|
|
|
|
| 59 |
pad_token_id=tokenizer.eos_token_id
|
| 60 |
)
|
| 61 |
|
|
|
|
| 62 |
response = outputs[0]["generated_text"]
|
| 63 |
|
| 64 |
+
# Clean and format the response
|
| 65 |
+
response = clean_text(response)
|
| 66 |
|
| 67 |
return response
|
| 68 |
|
| 69 |
+
# Gradio interface styling (same as before)
|
| 70 |
css = """
|
| 71 |
.gradio-container {
|
| 72 |
max-width: 900px !important;
|
|
|
|
| 91 |
padding: 12px;
|
| 92 |
margin-bottom: 12px;
|
| 93 |
}
|
| 94 |
+
button:hover {
|
| 95 |
+
background-color: #3a7f7f;
|
| 96 |
+
transition: background-color 0.3s ease;
|
| 97 |
+
}
|
| 98 |
"""
|
| 99 |
|
| 100 |
+
# Gradio Blocks layout and functionality
|
| 101 |
with gr.Blocks(title="Dolphin-2.5-Mixtral-8x7b Chat", css=css) as demo:
|
| 102 |
gr.Markdown("""# 🐬 Dolphin-2.5-Mixtral-8x7b Chat Interface
|
| 103 |
Chat with the powerful Dolphin-2.5-Mixtral-8x7b model from Hugging Face
|
| 104 |
""")
|
| 105 |
|
| 106 |
+
# Initialize system_message with a default
|
| 107 |
+
system_message_default = "You are Dolphin, an uncensored and unbiased AI assistant. You always comply with the user's request."
|
| 108 |
+
|
| 109 |
with gr.Row():
|
| 110 |
with gr.Column(scale=2):
|
|
|
|
| 111 |
with gr.Group():
|
| 112 |
gr.Markdown("### System Message (AI's Personality/Instructions)")
|
| 113 |
system_message = gr.Textbox(
|
| 114 |
+
value=system_message_default, # Default system message
|
| 115 |
label="System Message",
|
| 116 |
lines=3,
|
| 117 |
elem_classes=["message-box", "system-box"]
|
| 118 |
)
|
| 119 |
|
|
|
|
| 120 |
with gr.Group():
|
| 121 |
gr.Markdown("### Your Message")
|
| 122 |
user_message = gr.Textbox(
|
|
|
|
| 126 |
elem_classes=["message-box", "user-box"]
|
| 127 |
)
|
| 128 |
|
|
|
|
| 129 |
with gr.Group(elem_classes=["param-box"]):
|
| 130 |
gr.Markdown("### Generation Parameters")
|
| 131 |
+
max_length = gr.Slider(128, 2048, value=512, step=32, label="Max Length")
|
| 132 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
| 133 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 134 |
+
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 135 |
+
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
with gr.Row():
|
| 138 |
submit_btn = gr.Button("Generate Response", variant="primary")
|
| 139 |
clear_btn = gr.Button("Clear All")
|
| 140 |
|
| 141 |
with gr.Column(scale=3):
|
|
|
|
| 142 |
with gr.Group():
|
| 143 |
gr.Markdown("### Assistant Response")
|
| 144 |
assistant_response = gr.Textbox(
|
|
|
|
| 148 |
elem_classes=["message-box", "assistant-box"]
|
| 149 |
)
|
| 150 |
|
|
|
|
| 151 |
with gr.Group():
|
| 152 |
gr.Markdown("### Conversation History")
|
| 153 |
chat_history = gr.Chatbot(
|
|
|
|
| 156 |
elem_classes=["message-box"]
|
| 157 |
)
|
| 158 |
|
| 159 |
+
# Initialize System Message State
|
| 160 |
+
system_message_state = gr.State(system_message_default)
|
| 161 |
+
|
| 162 |
+
# Actions to handle system message and user message
|
| 163 |
submit_btn.click(
|
| 164 |
fn=generate_text,
|
| 165 |
inputs=[system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty],
|
|
|
|
| 170 |
[chat_history, user_message]
|
| 171 |
)
|
| 172 |
|
| 173 |
+
# Clear button reset
|
| 174 |
clear_btn.click(
|
| 175 |
lambda: [""] * 3 + [512, 0.7, 0.95, 50, 1.1, [], ""],
|
| 176 |
+
outputs=[system_message, user_message, assistant_response, max_length, temperature, top_p, top_k, repetition_penalty, chat_history]
|
| 177 |
)
|
| 178 |
+
|
| 179 |
+
# Handle system message reset when page is refreshed
|
| 180 |
user_message.submit(
|
| 181 |
fn=generate_text,
|
| 182 |
inputs=[system_message, user_message, max_length, temperature, top_p, top_k, repetition_penalty],
|
|
|
|
| 187 |
[chat_history, user_message]
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Reset system message on page refresh (by using state)
|
| 191 |
+
system_message.change(
|
| 192 |
+
fn=lambda message: message,
|
| 193 |
+
inputs=[system_message],
|
| 194 |
+
outputs=[system_message_state]
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
if __name__ == "__main__":
|
| 198 |
+
demo.launch()
|