File size: 31,391 Bytes
bcdf9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2 model."""

from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from megatron.core import ModelParallelConfig, mpu, parallel_state, tensor_parallel
from torch import nn
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.models.qwen2.modeling_qwen2 import CausalLMOutputWithPast

from verl.utils.megatron import sequence_parallel as sp_utils
from verl.utils.megatron import tensor_parallel as tp_utils
from verl.utils.megatron_utils import TransformerConfig, convert_config

from .layers import ParallelQwen2DecoderLayer, ParallelQwen2DecoderLayerRmPad, ParallelQwen2RMSNorm

"""

TODO: 

1. Add weight initialization. Here we need to be careful on TP weight init.

2. Add sequence parallel

3. Load checkpoint from Qwen2 pretrained checkpoint

"""


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device):
    """

    Make causal mask used for bi-directional self-attention.

    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """

    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.

    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


class ParallelQwen2Model(nn.Module):
    """

    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]



    Args:

        config: Qwen2Config

    """

    def __init__(self, config: Qwen2Config, megatron_config: ModelParallelConfig):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        embedding_kwargs = tp_utils.get_default_kwargs_for_parallel_embedding()
        if megatron_config is not None:
            assert embedding_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(embedding_kwargs, megatron_config)
        self.embed_tokens = tensor_parallel.VocabParallelEmbedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, **embedding_kwargs)

        self.layers = nn.ModuleList([ParallelQwen2DecoderLayer(config, megatron_config) for _ in range(config.num_hidden_layers)])
        self.norm = ParallelQwen2RMSNorm(config, megatron_config)

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
            combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask

        return combined_attention_mask

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        """



        Args:

            input_ids: input ids. shape (batch_size, seq_length)

            attention_mask: attention_mask. shape (batch_size, seq_length)

            position_ids: position ids. shape (batch_size, seq_length)



        Returns:



        """
        batch_size, seq_length = input_ids.shape
        inputs_embeds = self.embed_tokens(input_ids)
        # embed positions

        attention_mask = self._prepare_decoder_attention_mask(attention_mask, (batch_size, seq_length), inputs_embeds)

        hidden_states = inputs_embeds

        for idx, decoder_layer in enumerate(self.layers):
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
            )

            hidden_states = layer_outputs

        hidden_states = self.norm(hidden_states)

        return hidden_states


class ParallelQwen2ForCausalLM(nn.Module):
    def __init__(self, config: Qwen2Config, megatron_config: ModelParallelConfig):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.model = ParallelQwen2Model(config, megatron_config=megatron_config)
        self.vocab_size = config.vocab_size

        column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
        if megatron_config is not None:
            assert column_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(column_kwargs, self.megatron_config)

        self.lm_head = tensor_parallel.ColumnParallelLinear(
            input_size=config.hidden_size,
            output_size=config.vocab_size,
            bias=False,
            gather_output=False,
            skip_bias_add=False,
            **column_kwargs,
        )

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



        Returns:

        ```"""

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )

        hidden_states = outputs
        logits = self.lm_head(hidden_states)[0]

        logits = tensor_parallel.gather_from_tensor_model_parallel_region(logits)

        logits = logits.float()
        return CausalLMOutputWithPast(
            loss=None,
            logits=logits,
            past_key_values=None,
            hidden_states=None,
            attentions=None,
        )


from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa


class ParallelQwen2ModelRmPad(nn.Module):
    """

    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]



    Args:

        config: Qwen2Config

    """

    def __init__(self, config: Qwen2Config, megatron_config: ModelParallelConfig):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        embedding_kwargs = tp_utils.get_default_kwargs_for_parallel_embedding()
        self.megatron_config = megatron_config
        if megatron_config is not None:
            assert embedding_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(embedding_kwargs, self.megatron_config)
        self.embed_tokens = tensor_parallel.VocabParallelEmbedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, **embedding_kwargs)

        self.layers = nn.ModuleList([ParallelQwen2DecoderLayerRmPad(config, megatron_config) for _ in range(config.num_hidden_layers)])
        self.norm = ParallelQwen2RMSNorm(config, megatron_config)

    def forward(

        self,

        input_ids: torch.Tensor,

        position_ids: Optional[torch.LongTensor] = None,

        sequence_length: int = None,

        indices: torch.Tensor = None,

        cu_seqlens: int = None,

        max_seqlen_in_batch: int = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        """



        Args:

            input_ids: input ids. shape (1, totol_nnz)

            position_ids: position ids. shape (batch_size, seq_length)



        Returns:



        """
        inputs_embeds = self.embed_tokens(input_ids)  # (1, total_nnz) -> (1, total_nnz, hidden_size)

        # (1, total_nnz, hidden_size) -> (total_nnz, 1, hidden_size) -> (total_nnz // sp, 1, hidden_size)
        inputs_embeds = inputs_embeds.transpose(0, 1)
        if self.megatron_config.sequence_parallel:
            inputs_embeds = tensor_parallel.scatter_to_sequence_parallel_region(inputs_embeds)

        hidden_states = inputs_embeds
        for idx, decoder_layer in enumerate(self.layers):
            layer_outputs = decoder_layer(
                hidden_states,
                position_ids=position_ids,
                sequence_length=sequence_length,
                indices=indices,
                cu_seqlens=cu_seqlens,
                max_seqlen_in_batch=max_seqlen_in_batch,
            )

            hidden_states = layer_outputs

        hidden_states = self.norm(hidden_states)

        return hidden_states


class ParallelQwen2ForCausalLMRmPad(nn.Module):
    def __init__(self, config: Qwen2Config, megatron_config: ModelParallelConfig):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.megatron_config = megatron_config
        self.model = ParallelQwen2ModelRmPad(config, megatron_config=megatron_config)
        self.vocab_size = config.vocab_size
        self._init_head(config)

    def _init_head(self, config: Qwen2Config):
        column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
        if self.megatron_config is not None:
            assert column_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(column_kwargs, self.megatron_config)
        self.lm_head = tensor_parallel.ColumnParallelLinear(
            input_size=config.hidden_size,
            output_size=config.vocab_size,
            bias=False,
            gather_output=False,
            skip_bias_add=False,
            **column_kwargs,
        )

    def _forward_head(self, hidden_states):
        # all_gather from sequence parallel region is performed inside lm_head
        logits = self.lm_head(hidden_states)[0]
        logits = logits.float()  # (total_nnz_padded, 1, vocab_size // tp)
        logits = tensor_parallel.gather_from_tensor_model_parallel_region(logits)  # (total_nnz_padded, 1, vocab_size)
        return logits

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



        Returns:

        ```"""
        batch_size, sequence_length = input_ids.shape

        # remove padding here
        input_ids, indices, cu_seqlens, max_seqlen_in_batch, *_ = unpad_input(input_ids.unsqueeze(dim=-1), attention_mask)  # (total_nnz, 1)

        # pad input_ids to multiple of tp for all tp ranks
        # TODO: for better performance, the sp padding should be removed at each layer. Not sure the performance gap
        if self.megatron_config.sequence_parallel:
            input_ids = sp_utils.pad_to_sequence_parallel(input_ids)

        input_ids = input_ids.transpose(0, 1)  # (1, total_nnz+pad)

        outputs = self.model(
            input_ids=input_ids,
            position_ids=position_ids,
            sequence_length=sequence_length,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen_in_batch=max_seqlen_in_batch,
        )

        hidden_states = outputs

        logits = self._forward_head(hidden_states)

        # remove padding from sequence parallel
        if self.megatron_config.sequence_parallel:
            totol_nnz = cu_seqlens[-1]
            logits = logits[:totol_nnz]  # (total_nnz_padded)

        logits = torch.squeeze(logits, dim=1)  # remove the artificial batch dimension
        # add removed padding back
        logits = pad_input(logits, indices, batch_size, seqlen=sequence_length)  # (batch_size, sequence_length, vocab_size)

        return CausalLMOutputWithPast(
            loss=None,
            logits=logits,
            past_key_values=None,
            hidden_states=None,
            attentions=None,
        )


class ParallelQwen2ForValueRmPad(ParallelQwen2ForCausalLMRmPad):
    def _init_head(self, config):
        column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
        if self.megatron_config is not None:
            assert column_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(column_kwargs, self.megatron_config)
        self.lm_head = nn.Linear(in_features=config.hidden_size, out_features=1, bias=False)
        # lm_head is effectively the same as sequence parallel
        sp_utils.mark_parameter_as_sequence_parallel(self.lm_head.weight)

    def _forward_head(self, hidden_states):
        logits = self.lm_head(hidden_states)  # (total_nnz_padded // tp, 1, 1)
        logits = logits.float()
        if self.megatron_config.sequence_parallel:
            logits = tensor_parallel.gather_from_sequence_parallel_region(logits, tensor_parallel_output_grad=False)
        return logits

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output = super().forward(input_ids, attention_mask, position_ids)
        output.logits = torch.squeeze(output.logits, dim=-1)
        return output


"""

Support pipeline parallelism

"""


class ParallelQwen2ModelRmPadPP(nn.Module):
    """

    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]

    This model definition supports pipeline parallelism. To support pp and vpp,

    - This model only contains layer in this pp stage and vpp chunk

    - When calling get_model in Megatron, this rank will instantiate all the vpp chunks in this pp.

    Args:

        config: Qwen2Config

    """

    def __init__(self, config: Qwen2Config, megatron_config: ModelParallelConfig, pre_process, post_process):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.pre_process = pre_process
        self.post_process = post_process
        self.megatron_config = megatron_config
        embedding_kwargs = tp_utils.get_default_kwargs_for_parallel_embedding()
        if megatron_config is not None:
            assert embedding_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(embedding_kwargs, self.megatron_config)
        if pre_process:
            self.embed_tokens = tensor_parallel.VocabParallelEmbedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, **embedding_kwargs)
        else:
            self.embed_tokens = None

        pp_rank = mpu.get_pipeline_model_parallel_rank()
        pp_size = megatron_config.pipeline_model_parallel_size
        self.num_layer_per_pp = config.num_hidden_layers // pp_size
        vpp_size = megatron_config.virtual_pipeline_model_parallel_size
        vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank()

        if vpp_size is not None:
            self.num_layer_vpp_chunk = self.num_layer_per_pp // vpp_size
            self.num_layer_this_model = self.num_layer_vpp_chunk
            offset = vpp_rank * (config.num_hidden_layers // vpp_size) + (pp_rank * self.num_layer_vpp_chunk)
        else:
            self.num_layer_this_model = self.num_layer_per_pp
            offset = pp_rank * self.num_layer_per_pp

        self.layers = nn.ModuleList()
        for i in range(self.num_layer_this_model):
            layer = ParallelQwen2DecoderLayerRmPad(config, megatron_config, layer_idx=i + offset)
            self.layers.add_module(f"{i}", layer)

        if post_process:
            self.norm = ParallelQwen2RMSNorm(config, megatron_config)
        else:
            self.norm = None

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.



        When doing pipeline parallelism the input from the previous

        stage comes from communication, not from the input, so the

        model's forward_step_func won't have it. This function is thus

        used by internal code to bypass the input provided by the

        forward_step_func"""
        self.input_tensor = input_tensor

    def forward(

        self,

        input_ids: torch.Tensor,

        position_ids: Optional[torch.LongTensor] = None,

        sequence_length: int = None,

        indices: torch.Tensor = None,

        cu_seqlens: int = None,

        max_seqlen_in_batch: int = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        """



        Args:

            input_ids: input ids. shape (1, totol_nnz)

            position_ids: position ids. shape (batch_size, seq_length)



        Returns:



        """
        if self.pre_process:
            inputs_embeds = self.embed_tokens(input_ids)  # (1, total_nnz) -> (1, total_nnz, hidden_size)

            # vocab parallel embedding will not do sequence parallel reduce-scatter in open source megatron
            # so need to deal with it by handle here:
            # (1, total_nnz, hidden_size) -> (total_nnz, 1, hidden_size) -> (total_nnz // sp, 1, hidden_size)
            inputs_embeds = inputs_embeds.transpose(0, 1)
            if self.megatron_config.sequence_parallel:
                inputs_embeds = tensor_parallel.scatter_to_sequence_parallel_region(inputs_embeds)

            hidden_states = inputs_embeds
        else:
            # self.hidden_states should be passed by Megatron
            hidden_states = self.input_tensor

        for idx, decoder_layer in enumerate(self.layers):
            layer_outputs = decoder_layer(
                hidden_states,
                position_ids=position_ids,
                sequence_length=sequence_length,
                indices=indices,
                cu_seqlens=cu_seqlens,
                max_seqlen_in_batch=max_seqlen_in_batch,
            )

            hidden_states = layer_outputs

        if self.post_process:
            hidden_states = self.norm(hidden_states)

        return hidden_states


class ParallelQwen2ForCausalLMRmPadPP(nn.Module):
    def __init__(

        self,

        config: Qwen2Config,

        megatron_config: ModelParallelConfig,

        pre_process,

        post_process,

        share_embeddings_and_output_weights,

    ):
        super().__init__()
        self.config: TransformerConfig = convert_config(config, megatron_config)
        self.megatron_config = megatron_config
        self.model = ParallelQwen2ModelRmPadPP(config, megatron_config=megatron_config, pre_process=pre_process, post_process=post_process)
        self.share_embeddings_and_output_weights = share_embeddings_and_output_weights
        self.vocab_size = config.vocab_size
        self.pre_process = pre_process
        self.post_process = post_process
        if post_process:
            self._init_head(config)
        if pre_process or post_process:
            self.setup_embeddings_and_output_layer()

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.



        When doing pipeline parallelism the input from the previous

        stage comes from communication, not from the input, so the

        model's forward_step_func won't have it. This function is thus

        used by internal code to bypass the input provided by the

        forward_step_func"""
        assert len(input_tensor) == 1
        self.model.set_input_tensor(input_tensor[0])

    def _init_head(self, config):
        column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
        if self.megatron_config is not None:
            assert column_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(column_kwargs, self.megatron_config)
        self.lm_head = tensor_parallel.ColumnParallelLinear(
            input_size=config.hidden_size,
            output_size=config.vocab_size,
            bias=False,
            gather_output=False,
            skip_bias_add=False,
            skip_weight_param_allocation=self.pre_process and self.share_embeddings_and_output_weights,
            **column_kwargs,
        )

    def setup_embeddings_and_output_layer(self) -> None:
        """Sets up embedding layer in first stage and output layer in last stage.



        This function initalizes word embeddings in the final stage when we are

        using pipeline parallelism and sharing word embeddings, and sets up param

        attributes on the embedding and output layers.

        """
        # Set `is_embedding_or_output_parameter` attribute.
        if self.pre_process:
            self.model.embed_tokens.weight.is_embedding_or_output_parameter = True
        if self.post_process and self.lm_head.weight is not None:
            self.lm_head.weight.is_embedding_or_output_parameter = True

        if not self.share_embeddings_and_output_weights:
            return

        if parallel_state.get_pipeline_model_parallel_world_size() == 1:
            # Zero out wgrad if sharing embeddings between two layers on same
            # pipeline stage to make sure grad accumulation into main_grad is
            # correct and does not include garbage values (e.g., from torch.empty).
            self.shared_embedding_or_output_weight().zero_out_wgrad = True
            return

        if parallel_state.is_pipeline_first_stage() and self.pre_process and not self.post_process:
            self.shared_embedding_or_output_weight().shared_embedding = True

        if self.post_process and not self.pre_process:
            assert not parallel_state.is_pipeline_first_stage()
            # set word_embeddings weights to 0 here, then copy first
            # stage's weights using all_reduce below.
            self.lm_head.weight.data.fill_(0)
            self.lm_head.weight.shared = True
            self.lm_head.weight.shared_embedding = True

        if torch.distributed.is_initialized() and parallel_state.is_rank_in_embedding_group():
            weight = self.shared_embedding_or_output_weight()
            weight.data = weight.data.cuda()
            torch.distributed.all_reduce(weight.data, group=parallel_state.get_embedding_group())

    def shared_embedding_or_output_weight(self) -> torch.Tensor:
        if self.pre_process:
            return self.model.embed_tokens.weight
        elif self.post_process:
            return self.lm_head.weight
        return None

    def _forward_head(self, hidden_states):
        # all_gather from sequence parallel region is performed inside lm_head
        # print(f'logits shape before forward_head: {hidden_states.shape}, vocab_size = {self.config.vocab_size}') # [4, 32, 4096]
        output_weight = None
        if self.share_embeddings_and_output_weights:
            output_weight = self.shared_embedding_or_output_weight()
        logits = self.lm_head(hidden_states, weight=output_weight)[0]
        # print(f'logits shape after forward_head: {logits.shape}') # [8, 32, 8]
        logits = logits.float()  # (total_nnz_padded, 1, vocab_size // tp)
        return logits

    def forward(

        self,

        # original input

        *,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



        Returns:

        ```"""

        # Note that input_ids, attention_mask and position_ids should be passed to every pp layer.
        # In the first pp, input_ids will be used, in other pp layers hidden_states will be used inside self.model
        batch_size, sequence_length = input_ids.shape
        # remove padding here
        input_ids_rmpad, indices, cu_seqlens, max_seqlen_in_batch, *_ = unpad_input(input_ids.unsqueeze(dim=-1), attention_mask)  # (total_nnz, 1)

        # pad input_ids to multiple of tp for all tp ranks
        # TODO: for better performance, the sp padding should be removed at each layer. Not sure the performance gap
        if self.megatron_config.sequence_parallel:
            input_ids_rmpad = sp_utils.pad_to_sequence_parallel(input_ids_rmpad)

        input_ids_rmpad = input_ids_rmpad.transpose(0, 1)  # (1, total_nnz+pad)

        outputs = self.model(
            input_ids=input_ids_rmpad,
            position_ids=position_ids,
            sequence_length=sequence_length,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen_in_batch=max_seqlen_in_batch,
        )

        if self.post_process:
            hidden_states = outputs
            logits = self._forward_head(hidden_states)
            logits = torch.squeeze(logits, dim=1)  # remove the artificial batch dimension # torch.Size([8, 32, 16])

            # remove padding from sequence parallel
            if self.megatron_config.sequence_parallel:
                totol_nnz = cu_seqlens[-1]
                logits = logits[:totol_nnz]  # (total_nnz_padded)
            # add removed padding back. If input is already rmpad, we let the caller pad_input
            logits = pad_input(logits, indices, batch_size, seqlen=sequence_length)  # (batch_size, sequence_length, vocab_size)

            return CausalLMOutputWithPast(
                loss=None,
                logits=logits,
                past_key_values=None,
                hidden_states=None,
                attentions=None,
            )
        else:
            return outputs


class ParallelQwen2ForValueRmPadPP(ParallelQwen2ForCausalLMRmPadPP):
    def _init_head(self, config):
        column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
        if self.megatron_config is not None:
            assert column_kwargs.get("config", False), "must have ModelParallelConfig"
            tp_utils.update_kwargs_with_config(column_kwargs, self.megatron_config)
        self.lm_head = nn.Linear(in_features=config.hidden_size, out_features=1, bias=False)
        # lm_head is effectively the same as sequence parallel
        sp_utils.mark_parameter_as_sequence_parallel(self.lm_head.weight)

    def _forward_head(self, hidden_states):
        logits = self.lm_head(hidden_states)  # (total_nnz_padded // tp, 1, 1)
        logits = logits.float()
        if self.megatron_config.sequence_parallel:
            logits = tensor_parallel.gather_from_sequence_parallel_region(logits, tensor_parallel_output_grad=False)
        return logits

    def forward(

        self,

        *,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output = super().forward(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids)
        if self.post_process:
            output.logits = torch.squeeze(output.logits, dim=-1)
            return output
        else:
            return output