File size: 10,329 Bytes
bcdf9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Optional, Tuple

import torch
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import _flash_attention_forward
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
from transformers.utils import logging

from verl.utils.ulysses import (
    gather_heads_scatter_seq,
    gather_seq_scatter_heads,
    get_ulysses_sequence_parallel_world_size,
    validate_ulysses_config,
)

logger = logging.get_logger(__name__)


def qwen2_flash_attn_forward(

    self,

    hidden_states: torch.Tensor,

    attention_mask: Optional[torch.Tensor] = None,

    position_ids: Optional[torch.LongTensor] = None,

    past_key_value: Optional[Cache] = None,

    output_attentions: bool = False,

    use_cache: bool = False,

    cache_position: Optional[torch.LongTensor] = None,

    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46

):
    """

    Adapted from transformers 4.47.1 to support Ulysses sequence parallelism.



    NOTE: This function is only tested on transformers versions between 4.45.0 and 4.47.1.

    """
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)

    ########## AlltoAll for Ulysses ##########
    ulysses_sp_size = get_ulysses_sequence_parallel_world_size()

    if ulysses_sp_size > 1:
        validate_ulysses_config(self.num_heads, ulysses_sp_size)

        # (bsz, n_head, seq_len/n, head_dim) -> (bsz, n_head/n, seq_len, head_dim)
        query_states = gather_seq_scatter_heads(query_states, seq_dim=2, head_dim=1)
        key_states = gather_seq_scatter_heads(key_states, seq_dim=2, head_dim=1)
        value_states = gather_seq_scatter_heads(value_states, seq_dim=2, head_dim=1)

    full_q_len = query_states.size(2)  # full seq length

    if position_embeddings is None:
        logger.warning_once(
            "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
            "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
            "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
            "removed and `position_embeddings` will be mandatory."
        )
        cos, sin = self.rotary_emb(value_states, position_ids)
    else:
        cos, sin = position_embeddings
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

    if past_key_value is not None:
        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    # repeat k/v heads if n_kv_heads < n_heads
    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)
    dropout_rate = 0.0 if not self.training else self.attention_dropout

    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
    # therefore the input hidden states gets silently casted in float32. Hence, we need
    # cast them back in float16 just to be sure everything works as expected.
    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, "_pre_quantization_dtype"):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        logger.warning_once(f"The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in {target_dtype}.")

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    # Reashape to the expected shape for Flash Attention
    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    if self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers:
        sliding_window = self.config.sliding_window
    else:
        sliding_window = None

    attn_output = _flash_attention_forward(
        query_states,
        key_states,
        value_states,
        attention_mask,
        full_q_len,
        position_ids=position_ids,
        dropout=dropout_rate,
        sliding_window=sliding_window,
        is_causal=self.is_causal,
        use_top_left_mask=self._flash_attn_uses_top_left_mask,
    )

    # use full_q_len to reshape
    attn_output = attn_output.reshape(bsz, full_q_len, -1, self.head_dim).contiguous()
    ########## AlltoAll for Ulysses ##########
    if ulysses_sp_size > 1:
        attn_output = gather_heads_scatter_seq(attn_output, seq_dim=1, head_dim=2)
    attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


def qwen2_attn_forward(

    self,

    hidden_states: torch.Tensor,

    position_embeddings: Tuple[torch.Tensor, torch.Tensor],

    attention_mask: Optional[torch.Tensor],

    past_key_value: Optional[Cache] = None,

    cache_position: Optional[torch.LongTensor] = None,

    **kwargs,

) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    """

    Adapted from transformers 4.49.0 to support Ulysses sequence parallelism for transformers >= 4.48.0.



    NOTE: This function has been tested only on transformers versions between 4.48.0 and 4.50.0.

    """
    from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS

    bsz, q_len, _ = hidden_states.shape
    hidden_shape = (bsz, q_len, -1, self.head_dim)

    query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

    ########## AlltoAll for Ulysses ##########
    ulysses_sp_size = get_ulysses_sequence_parallel_world_size()

    if ulysses_sp_size > 1:
        validate_ulysses_config(self.config.num_attention_heads, ulysses_sp_size)

        # (bsz, n_head, seq_len/n, head_dim) -> (bsz, n_head/n, seq_len, head_dim)
        query_states = gather_seq_scatter_heads(query_states, seq_dim=2, head_dim=1)
        key_states = gather_seq_scatter_heads(key_states, seq_dim=2, head_dim=1)
        value_states = gather_seq_scatter_heads(value_states, seq_dim=2, head_dim=1)

    full_q_len = query_states.size(2)

    cos, sin = position_embeddings
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

    if past_key_value is not None:
        # sin and cos are specific to RoPE models; cache_position needed for the static cache
        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    sliding_window = None
    if self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers:
        sliding_window = self.config.sliding_window

    from transformers.models.qwen2.modeling_qwen2 import eager_attention_forward

    attention_interface: Callable = eager_attention_forward
    if self.config._attn_implementation != "eager":
        if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
            logger.warning_once('`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.')
        else:
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

    attn_output, attn_weights = attention_interface(
        self,
        query_states,
        key_states,
        value_states,
        attention_mask,
        dropout=0.0 if not self.training else self.attention_dropout,
        scaling=self.scaling,
        sliding_window=sliding_window,  # main diff with Llama
        **kwargs,
    )

    attn_output = attn_output.reshape(bsz, full_q_len, -1, self.head_dim).contiguous()
    ########## AlltoAll for Ulysses ##########
    if ulysses_sp_size > 1:
        # (bsz, seq_len, n_head/n, head_dim) -> (bsz, seq_len/n, n_head, head_dim)
        attn_output = gather_heads_scatter_seq(attn_output, seq_dim=1, head_dim=2)
    attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
    attn_output = self.o_proj(attn_output)
    return attn_output, attn_weights