Spaces:
Paused
Paused
| from abc import abstractmethod | |
| import math | |
| import numpy as np | |
| import torch as th | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .util import ( | |
| checkpoint, | |
| avg_pool_nd, | |
| zero_module, | |
| normalization, | |
| timestep_embedding, | |
| ) | |
| from ..attention import SpatialTransformer | |
| from comfy.ldm.util import exists | |
| import comfy.ops | |
| class TimestepBlock(nn.Module): | |
| """ | |
| Any module where forward() takes timestep embeddings as a second argument. | |
| """ | |
| def forward(self, x, emb): | |
| """ | |
| Apply the module to `x` given `emb` timestep embeddings. | |
| """ | |
| #This is needed because accelerate makes a copy of transformer_options which breaks "current_index" | |
| def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None): | |
| for layer in ts: | |
| if isinstance(layer, TimestepBlock): | |
| x = layer(x, emb) | |
| elif isinstance(layer, SpatialTransformer): | |
| x = layer(x, context, transformer_options) | |
| if "current_index" in transformer_options: | |
| transformer_options["current_index"] += 1 | |
| elif isinstance(layer, Upsample): | |
| x = layer(x, output_shape=output_shape) | |
| else: | |
| x = layer(x) | |
| return x | |
| class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
| """ | |
| A sequential module that passes timestep embeddings to the children that | |
| support it as an extra input. | |
| """ | |
| def forward(self, *args, **kwargs): | |
| return forward_timestep_embed(self, *args, **kwargs) | |
| class Upsample(nn.Module): | |
| """ | |
| An upsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| if use_conv: | |
| self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) | |
| def forward(self, x, output_shape=None): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] | |
| if output_shape is not None: | |
| shape[1] = output_shape[3] | |
| shape[2] = output_shape[4] | |
| else: | |
| shape = [x.shape[2] * 2, x.shape[3] * 2] | |
| if output_shape is not None: | |
| shape[0] = output_shape[2] | |
| shape[1] = output_shape[3] | |
| x = F.interpolate(x, size=shape, mode="nearest") | |
| if self.use_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = operations.conv_nd( | |
| dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device | |
| ) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class ResBlock(TimestepBlock): | |
| """ | |
| A residual block that can optionally change the number of channels. | |
| :param channels: the number of input channels. | |
| :param emb_channels: the number of timestep embedding channels. | |
| :param dropout: the rate of dropout. | |
| :param out_channels: if specified, the number of out channels. | |
| :param use_conv: if True and out_channels is specified, use a spatial | |
| convolution instead of a smaller 1x1 convolution to change the | |
| channels in the skip connection. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param use_checkpoint: if True, use gradient checkpointing on this module. | |
| :param up: if True, use this block for upsampling. | |
| :param down: if True, use this block for downsampling. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| emb_channels, | |
| dropout, | |
| out_channels=None, | |
| use_conv=False, | |
| use_scale_shift_norm=False, | |
| dims=2, | |
| use_checkpoint=False, | |
| up=False, | |
| down=False, | |
| dtype=None, | |
| device=None, | |
| operations=comfy.ops | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.dropout = dropout | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_checkpoint = use_checkpoint | |
| self.use_scale_shift_norm = use_scale_shift_norm | |
| self.in_layers = nn.Sequential( | |
| nn.GroupNorm(32, channels, dtype=dtype, device=device), | |
| nn.SiLU(), | |
| operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device), | |
| ) | |
| self.updown = up or down | |
| if up: | |
| self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) | |
| self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) | |
| elif down: | |
| self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) | |
| self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| operations.Linear( | |
| emb_channels, | |
| 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device | |
| ), | |
| ) | |
| self.out_layers = nn.Sequential( | |
| nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device), | |
| nn.SiLU(), | |
| nn.Dropout(p=dropout), | |
| zero_module( | |
| operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device) | |
| ), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| elif use_conv: | |
| self.skip_connection = operations.conv_nd( | |
| dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device | |
| ) | |
| else: | |
| self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) | |
| def forward(self, x, emb): | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| :param x: an [N x C x ...] Tensor of features. | |
| :param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| return checkpoint( | |
| self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
| ) | |
| def _forward(self, x, emb): | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| emb_out = self.emb_layers(emb).type(h.dtype) | |
| while len(emb_out.shape) < len(h.shape): | |
| emb_out = emb_out[..., None] | |
| if self.use_scale_shift_norm: | |
| out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
| scale, shift = th.chunk(emb_out, 2, dim=1) | |
| h = out_norm(h) * (1 + scale) + shift | |
| h = out_rest(h) | |
| else: | |
| h = h + emb_out | |
| h = self.out_layers(h) | |
| return self.skip_connection(x) + h | |
| class Timestep(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.dim = dim | |
| def forward(self, t): | |
| return timestep_embedding(t, self.dim) | |
| def apply_control(h, control, name): | |
| if control is not None and name in control and len(control[name]) > 0: | |
| ctrl = control[name].pop() | |
| if ctrl is not None: | |
| try: | |
| h += ctrl | |
| except: | |
| print("warning control could not be applied", h.shape, ctrl.shape) | |
| return h | |
| class UNetModel(nn.Module): | |
| """ | |
| The full UNet model with attention and timestep embedding. | |
| :param in_channels: channels in the input Tensor. | |
| :param model_channels: base channel count for the model. | |
| :param out_channels: channels in the output Tensor. | |
| :param num_res_blocks: number of residual blocks per downsample. | |
| :param dropout: the dropout probability. | |
| :param channel_mult: channel multiplier for each level of the UNet. | |
| :param conv_resample: if True, use learned convolutions for upsampling and | |
| downsampling. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param num_classes: if specified (as an int), then this model will be | |
| class-conditional with `num_classes` classes. | |
| :param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
| :param num_heads: the number of attention heads in each attention layer. | |
| :param num_heads_channels: if specified, ignore num_heads and instead use | |
| a fixed channel width per attention head. | |
| :param num_heads_upsample: works with num_heads to set a different number | |
| of heads for upsampling. Deprecated. | |
| :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
| :param resblock_updown: use residual blocks for up/downsampling. | |
| :param use_new_attention_order: use a different attention pattern for potentially | |
| increased efficiency. | |
| """ | |
| def __init__( | |
| self, | |
| image_size, | |
| in_channels, | |
| model_channels, | |
| out_channels, | |
| num_res_blocks, | |
| dropout=0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| num_classes=None, | |
| use_checkpoint=False, | |
| dtype=th.float32, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| num_heads_upsample=-1, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| use_new_attention_order=False, | |
| use_spatial_transformer=False, # custom transformer support | |
| transformer_depth=1, # custom transformer support | |
| context_dim=None, # custom transformer support | |
| n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
| legacy=True, | |
| disable_self_attentions=None, | |
| num_attention_blocks=None, | |
| disable_middle_self_attn=False, | |
| use_linear_in_transformer=False, | |
| adm_in_channels=None, | |
| transformer_depth_middle=None, | |
| transformer_depth_output=None, | |
| device=None, | |
| operations=comfy.ops, | |
| ): | |
| super().__init__() | |
| assert use_spatial_transformer == True, "use_spatial_transformer has to be true" | |
| if use_spatial_transformer: | |
| assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
| if context_dim is not None: | |
| assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
| # from omegaconf.listconfig import ListConfig | |
| # if type(context_dim) == ListConfig: | |
| # context_dim = list(context_dim) | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.image_size = image_size | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| if isinstance(num_res_blocks, int): | |
| self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: | |
| if len(num_res_blocks) != len(channel_mult): | |
| raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
| "as a list/tuple (per-level) with the same length as channel_mult") | |
| self.num_res_blocks = num_res_blocks | |
| if disable_self_attentions is not None: | |
| # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
| assert len(disable_self_attentions) == len(channel_mult) | |
| if num_attention_blocks is not None: | |
| assert len(num_attention_blocks) == len(self.num_res_blocks) | |
| transformer_depth = transformer_depth[:] | |
| transformer_depth_output = transformer_depth_output[:] | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.num_classes = num_classes | |
| self.use_checkpoint = use_checkpoint | |
| self.dtype = dtype | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), | |
| nn.SiLU(), | |
| operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
| ) | |
| if self.num_classes is not None: | |
| if isinstance(self.num_classes, int): | |
| self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
| elif self.num_classes == "continuous": | |
| print("setting up linear c_adm embedding layer") | |
| self.label_emb = nn.Linear(1, time_embed_dim) | |
| elif self.num_classes == "sequential": | |
| assert adm_in_channels is not None | |
| self.label_emb = nn.Sequential( | |
| nn.Sequential( | |
| operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), | |
| nn.SiLU(), | |
| operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
| ) | |
| ) | |
| else: | |
| raise ValueError() | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential( | |
| operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) | |
| ) | |
| ] | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=mult * model_channels, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| num_transformers = transformer_depth.pop(0) | |
| if num_transformers > 0: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| #num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| if exists(disable_self_attentions): | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
| layers.append(SpatialTransformer( | |
| ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
| disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations | |
| ) | |
| if resblock_updown | |
| else Downsample( | |
| ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| #num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| mid_block = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations | |
| )] | |
| if transformer_depth_middle >= 0: | |
| mid_block += [SpatialTransformer( # always uses a self-attn | |
| ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | |
| disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations | |
| ), | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations | |
| )] | |
| self.middle_block = TimestepEmbedSequential(*mid_block) | |
| self._feature_size += ch | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(channel_mult))[::-1]: | |
| for i in range(self.num_res_blocks[level] + 1): | |
| ich = input_block_chans.pop() | |
| layers = [ | |
| ResBlock( | |
| ch + ich, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=model_channels * mult, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations | |
| ) | |
| ] | |
| ch = model_channels * mult | |
| num_transformers = transformer_depth_output.pop() | |
| if num_transformers > 0: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| #num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| if exists(disable_self_attentions): | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if not exists(num_attention_blocks) or i < num_attention_blocks[level]: | |
| layers.append( | |
| SpatialTransformer( | |
| ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
| disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations | |
| ) | |
| ) | |
| if level and i == self.num_res_blocks[level]: | |
| out_ch = ch | |
| layers.append( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| up=True, | |
| dtype=self.dtype, | |
| device=device, | |
| operations=operations | |
| ) | |
| if resblock_updown | |
| else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) | |
| ) | |
| ds //= 2 | |
| self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| self.out = nn.Sequential( | |
| nn.GroupNorm(32, ch, dtype=self.dtype, device=device), | |
| nn.SiLU(), | |
| zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), | |
| ) | |
| if self.predict_codebook_ids: | |
| self.id_predictor = nn.Sequential( | |
| nn.GroupNorm(32, ch, dtype=self.dtype, device=device), | |
| operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), | |
| #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits | |
| ) | |
| def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
| """ | |
| Apply the model to an input batch. | |
| :param x: an [N x C x ...] Tensor of inputs. | |
| :param timesteps: a 1-D batch of timesteps. | |
| :param context: conditioning plugged in via crossattn | |
| :param y: an [N] Tensor of labels, if class-conditional. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| transformer_options["original_shape"] = list(x.shape) | |
| transformer_options["current_index"] = 0 | |
| transformer_patches = transformer_options.get("patches", {}) | |
| assert (y is not None) == ( | |
| self.num_classes is not None | |
| ), "must specify y if and only if the model is class-conditional" | |
| hs = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) | |
| emb = self.time_embed(t_emb) | |
| if self.num_classes is not None: | |
| assert y.shape[0] == x.shape[0] | |
| emb = emb + self.label_emb(y) | |
| h = x.type(self.dtype) | |
| for id, module in enumerate(self.input_blocks): | |
| transformer_options["block"] = ("input", id) | |
| h = forward_timestep_embed(module, h, emb, context, transformer_options) | |
| h = apply_control(h, control, 'input') | |
| if "input_block_patch" in transformer_patches: | |
| patch = transformer_patches["input_block_patch"] | |
| for p in patch: | |
| h = p(h, transformer_options) | |
| hs.append(h) | |
| if "input_block_patch_after_skip" in transformer_patches: | |
| patch = transformer_patches["input_block_patch_after_skip"] | |
| for p in patch: | |
| h = p(h, transformer_options) | |
| transformer_options["block"] = ("middle", 0) | |
| h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) | |
| h = apply_control(h, control, 'middle') | |
| for id, module in enumerate(self.output_blocks): | |
| transformer_options["block"] = ("output", id) | |
| hsp = hs.pop() | |
| hsp = apply_control(hsp, control, 'output') | |
| if "output_block_patch" in transformer_patches: | |
| patch = transformer_patches["output_block_patch"] | |
| for p in patch: | |
| h, hsp = p(h, hsp, transformer_options) | |
| h = th.cat([h, hsp], dim=1) | |
| del hsp | |
| if len(hs) > 0: | |
| output_shape = hs[-1].shape | |
| else: | |
| output_shape = None | |
| h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) | |
| h = h.type(x.dtype) | |
| if self.predict_codebook_ids: | |
| return self.id_predictor(h) | |
| else: | |
| return self.out(h) | |