Spaces:
Runtime error
Runtime error
File size: 6,893 Bytes
c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae 48eab4e c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae e0dd7c6 c8d0eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os # For filesystem operations
import shutil # For directory cleanup
import zipfile # For extracting model archives
import pathlib # For path manipulations
import pandas # For tabular data handling
import gradio # For interactive UI
import huggingface_hub # For downloading model assets
import autogluon.tabular # For loading and running AutoGluon predictors
# Settings
MODEL_REPO_ID = "ccm/2024-24679-tabular-autolguon-predictor"
ZIP_FILENAME = "autogluon_predictor_dir.zip"
CACHE_DIR = pathlib.Path("hf_assets")
EXTRACT_DIR = CACHE_DIR / "predictor_native"
# Feature column names and target column names
FEATURE_COLS = [
"About how many hours per week do you spend listening to music?",
"Approximately how many songs are in your music library?",
"Approximately how many playlists have you created yourself?",
"How often do you share music with others?",
"Which decade of music do you listen to most?",
"How often do you attend live music events?",
"Do you prefer songs with lyrics or instrumental music?",
]
TARGET_COL = "Do you usually listen to music alone or with others?"
# Encoding for likert questions
LIKERT5_LABELS = ["Never", "Rarely", "Sometimes", "Often", "Very Often"]
LIKERT5_MAP = {label: idx for idx, label in enumerate(LIKERT5_LABELS)}
# Encoding for decade questions
DECADE_LABELS = ["1970s and before", "1980s", "1990s", "2000s", "2010s", "2020s"]
DECADE_MAP = {label: idx for idx, label in enumerate(DECADE_LABELS)}
# Encoding for lyrics questions
LYRICS_LABELS = ["Lyrics", "Instrumental", "Both equally"]
LYRICS_MAP = {label: idx for idx, label in enumerate(LYRICS_LABELS)}
# Encoding for outcome questions
OUTCOME_LABELS = {
0: "Mostly Alone",
1: "Mostly With Others",
}
# Download & load the native predictor
def _prepare_predictor_dir() -> str:
CACHE_DIR.mkdir(parents=True, exist_ok=True)
local_zip = huggingface_hub.hf_hub_download(
repo_id=MODEL_REPO_ID,
filename=ZIP_FILENAME,
repo_type="model",
local_dir=str(CACHE_DIR),
local_dir_use_symlinks=False,
)
if EXTRACT_DIR.exists():
shutil.rmtree(EXTRACT_DIR)
EXTRACT_DIR.mkdir(parents=True, exist_ok=True)
with zipfile.ZipFile(local_zip, "r") as zf:
zf.extractall(str(EXTRACT_DIR))
contents = list(EXTRACT_DIR.iterdir())
predictor_root = contents[0] if (len(contents) == 1 and contents[0].is_dir()) else EXTRACT_DIR
return str(predictor_root)
PREDICTOR_DIR = _prepare_predictor_dir()
PREDICTOR = autogluon.tabular.TabularPredictor.load(PREDICTOR_DIR, require_py_version_match=False)
# A mapping utility to make it easier to encode the variables
def _human_label(c):
try:
ci = int(c)
if ci in OUTCOME_LABELS:
return OUTCOME_LABELS[ci]
except Exception:
pass
if c in OUTCOME_LABELS:
return OUTCOME_LABELS[c]
return str(c)
# This functions takes all of our features,e ncodes this accordingly, and performs a predictions
def do_predict(hours_per_week, num_songs, num_playlists, share_label, decade_label, live_events_label, lyrics_label):
share_code = LIKERT5_MAP[share_label]
decade_code = DECADE_MAP[decade_label]
live_events_code = LIKERT5_MAP[live_events_label]
lyrics_code = LYRICS_MAP[lyrics_label]
row = {
FEATURE_COLS[0]: float(hours_per_week),
FEATURE_COLS[1]: int(num_songs),
FEATURE_COLS[2]: int(num_playlists),
FEATURE_COLS[3]: int(share_code),
FEATURE_COLS[4]: int(decade_code),
FEATURE_COLS[5]: int(live_events_code),
FEATURE_COLS[6]: int(lyrics_code),
}
X = pandas.DataFrame([row], columns=FEATURE_COLS)
pred_series = PREDICTOR.predict(X)
raw_pred = pred_series.iloc[0]
try:
proba = PREDICTOR.predict_proba(X)
if isinstance(proba, pandas.Series):
proba = proba.to_frame().T
except Exception:
proba = None
pred_label = _human_label(raw_pred)
proba_dict = None
if proba is not None:
row0 = proba.iloc[0]
tmp = {}
for cls, val in row0.items():
key = _human_label(cls)
tmp[key] = float(val) + float(tmp.get(key, 0.0))
proba_dict = dict(sorted(tmp.items(), key=lambda kv: kv[1], reverse=True))
df_out = pandas.DataFrame([{
"Predicted outcome": pred_label,
"Confidence (%)": round((proba_dict.get(pred_label, 1.0) if proba_dict else 1.0) * 100, 2),
}])
md = f"**Prediction:** {pred_label}"
if proba_dict:
md += f" \n**Confidence:** {round(proba_dict.get(pred_label, 0.0) * 100, 2)}%"
return proba_dict
# Representative examples
EXAMPLES = [
[5.0, 300, 3, "Rarely", "2010s", "Rarely", "Lyrics"],
[18.0, 1500, 25, "Often", "2000s", "Often", "Both equally"],
[12.0, 8000, 40, "Sometimes", "1990s", "Sometimes", "Instrumental"],
[4.0, 120, 1, "Never", "1970s and before", "Rarely", "Lyrics"],
[22.0, 500, 10, "Very Often", "2020s", "Very Often", "Lyrics"],
]
# Gradio UI
with gradio.Blocks() as demo:
# Provide an introduction
gradio.Markdown("# Will they make you listen?")
gradio.Markdown("""
This is a simple app that demonstrates builds on the datasets and models
we've been making in class to answer an important question about your friends:
are they going to make you listen to their music? To use hte interface, make
selections using the interface elements shown below.
""")
with gradio.Row():
hours_per_week = gradio.Slider(0, 80, step=0.5, value=5.0, label=FEATURE_COLS[0])
num_songs = gradio.Number(value=200, precision=0, label=FEATURE_COLS[1])
num_playlists = gradio.Number(value=5, precision=0, label=FEATURE_COLS[2])
with gradio.Row():
share_label = gradio.Radio(choices=LIKERT5_LABELS, value="Sometimes", label="How often do you share music with others?")
live_events_label = gradio.Radio(choices=LIKERT5_LABELS, value="Rarely", label="How often do you attend live music events?")
with gradio.Row():
decade_label = gradio.Radio(choices=DECADE_LABELS, value="2010s", label="Which decade of music do you listen to most?")
lyrics_label = gradio.Radio(choices=LYRICS_LABELS, value="Lyrics", label="Do you prefer songs with lyrics or instrumental music?")
proba_pretty = gradio.Label(num_top_classes=5, label="Class probabilities")
inputs = [hours_per_week, num_songs, num_playlists, share_label, decade_label, live_events_label, lyrics_label]
for comp in inputs:
comp.change(fn=do_predict, inputs=inputs, outputs=[proba_pretty])
gradio.Examples(
examples=EXAMPLES,
inputs=inputs,
label="Representative examples",
examples_per_page=5,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |