File size: 6,893 Bytes
c8d0eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
e0dd7c6
c8d0eae
 
 
e0dd7c6
c8d0eae
 
 
e0dd7c6
c8d0eae
 
 
e0dd7c6
c8d0eae
 
 
 
 
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48eab4e
c8d0eae
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
 
e0dd7c6
 
 
 
 
 
 
 
 
c8d0eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0dd7c6
c8d0eae
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os  # For filesystem operations
import shutil  # For directory cleanup
import zipfile  # For extracting model archives
import pathlib  # For path manipulations
import pandas  # For tabular data handling
import gradio  # For interactive UI
import huggingface_hub  # For downloading model assets
import autogluon.tabular  # For loading and running AutoGluon predictors

# Settings
MODEL_REPO_ID = "ccm/2024-24679-tabular-autolguon-predictor"
ZIP_FILENAME  = "autogluon_predictor_dir.zip"
CACHE_DIR = pathlib.Path("hf_assets")
EXTRACT_DIR = CACHE_DIR / "predictor_native"

# Feature column names and target column names
FEATURE_COLS = [
    "About how many hours per week do you spend listening to music?",
    "Approximately how many songs are in your music library?",
    "Approximately how many playlists have you created yourself?",
    "How often do you share music with others?",
    "Which decade of music do you listen to most?",
    "How often do you attend live music events?",
    "Do you prefer songs with lyrics or instrumental music?",
]
TARGET_COL = "Do you usually listen to music alone or with others?"

# Encoding for likert questions
LIKERT5_LABELS = ["Never", "Rarely", "Sometimes", "Often", "Very Often"]
LIKERT5_MAP = {label: idx for idx, label in enumerate(LIKERT5_LABELS)}

# Encoding for decade questions
DECADE_LABELS = ["1970s and before", "1980s", "1990s", "2000s", "2010s", "2020s"]
DECADE_MAP = {label: idx for idx, label in enumerate(DECADE_LABELS)}

# Encoding for lyrics questions
LYRICS_LABELS = ["Lyrics", "Instrumental", "Both equally"]
LYRICS_MAP = {label: idx for idx, label in enumerate(LYRICS_LABELS)}

# Encoding for outcome questions
OUTCOME_LABELS = {
    0: "Mostly Alone",
    1: "Mostly With Others",
}

# Download & load the native predictor
def _prepare_predictor_dir() -> str:
    CACHE_DIR.mkdir(parents=True, exist_ok=True)
    local_zip = huggingface_hub.hf_hub_download(
        repo_id=MODEL_REPO_ID,
        filename=ZIP_FILENAME,
        repo_type="model",
        local_dir=str(CACHE_DIR),
        local_dir_use_symlinks=False,
    )
    if EXTRACT_DIR.exists():
        shutil.rmtree(EXTRACT_DIR)
    EXTRACT_DIR.mkdir(parents=True, exist_ok=True)
    with zipfile.ZipFile(local_zip, "r") as zf:
        zf.extractall(str(EXTRACT_DIR))
    contents = list(EXTRACT_DIR.iterdir())
    predictor_root = contents[0] if (len(contents) == 1 and contents[0].is_dir()) else EXTRACT_DIR
    return str(predictor_root)

PREDICTOR_DIR = _prepare_predictor_dir()
PREDICTOR = autogluon.tabular.TabularPredictor.load(PREDICTOR_DIR, require_py_version_match=False)

# A mapping utility to make it easier to encode the variables
def _human_label(c):
    try:
        ci = int(c)
        if ci in OUTCOME_LABELS:
            return OUTCOME_LABELS[ci]
    except Exception:
        pass
    if c in OUTCOME_LABELS:
        return OUTCOME_LABELS[c]
    return str(c)

# This functions takes all of our features,e ncodes this accordingly, and performs a predictions
def do_predict(hours_per_week, num_songs, num_playlists, share_label, decade_label, live_events_label, lyrics_label):
    share_code = LIKERT5_MAP[share_label]
    decade_code = DECADE_MAP[decade_label]
    live_events_code = LIKERT5_MAP[live_events_label]
    lyrics_code = LYRICS_MAP[lyrics_label]

    row = {
        FEATURE_COLS[0]: float(hours_per_week),
        FEATURE_COLS[1]: int(num_songs),
        FEATURE_COLS[2]: int(num_playlists),
        FEATURE_COLS[3]: int(share_code),
        FEATURE_COLS[4]: int(decade_code),
        FEATURE_COLS[5]: int(live_events_code),
        FEATURE_COLS[6]: int(lyrics_code),
    }
    X = pandas.DataFrame([row], columns=FEATURE_COLS)

    pred_series = PREDICTOR.predict(X)
    raw_pred = pred_series.iloc[0]

    try:
        proba = PREDICTOR.predict_proba(X)
        if isinstance(proba, pandas.Series):
            proba = proba.to_frame().T
    except Exception:
        proba = None

    pred_label = _human_label(raw_pred)

    proba_dict = None
    if proba is not None:
        row0 = proba.iloc[0]
        tmp = {}
        for cls, val in row0.items():
            key = _human_label(cls)
            tmp[key] = float(val) + float(tmp.get(key, 0.0))
        proba_dict = dict(sorted(tmp.items(), key=lambda kv: kv[1], reverse=True))

    df_out = pandas.DataFrame([{
        "Predicted outcome": pred_label,
        "Confidence (%)": round((proba_dict.get(pred_label, 1.0) if proba_dict else 1.0) * 100, 2),
    }])

    md = f"**Prediction:** {pred_label}"
    if proba_dict:
        md += f"  \n**Confidence:** {round(proba_dict.get(pred_label, 0.0) * 100, 2)}%"

    return proba_dict

# Representative examples
EXAMPLES = [
    [5.0, 300, 3,  "Rarely",      "2010s", "Rarely",      "Lyrics"],
    [18.0, 1500, 25, "Often",     "2000s", "Often",       "Both equally"],
    [12.0, 8000, 40, "Sometimes", "1990s", "Sometimes",   "Instrumental"],
    [4.0, 120, 1,   "Never",      "1970s and before", "Rarely", "Lyrics"],
    [22.0, 500, 10, "Very Often", "2020s", "Very Often",  "Lyrics"],
]

# Gradio UI
with gradio.Blocks() as demo:
    # Provide an introduction
    gradio.Markdown("# Will they make you listen?")
    gradio.Markdown("""
    This is a simple app that demonstrates builds on the datasets and models 
    we've been making in class to answer an important question about your friends:
    are they going to make you listen to their music? To use hte interface, make 
    selections using the interface elements shown below. 
    """)

    with gradio.Row():
        hours_per_week = gradio.Slider(0, 80, step=0.5, value=5.0, label=FEATURE_COLS[0])
        num_songs = gradio.Number(value=200, precision=0, label=FEATURE_COLS[1])
        num_playlists = gradio.Number(value=5, precision=0, label=FEATURE_COLS[2])

    with gradio.Row():
        share_label = gradio.Radio(choices=LIKERT5_LABELS, value="Sometimes", label="How often do you share music with others?")
        live_events_label = gradio.Radio(choices=LIKERT5_LABELS, value="Rarely", label="How often do you attend live music events?")

    with gradio.Row():
        decade_label = gradio.Radio(choices=DECADE_LABELS, value="2010s", label="Which decade of music do you listen to most?")
        lyrics_label = gradio.Radio(choices=LYRICS_LABELS, value="Lyrics", label="Do you prefer songs with lyrics or instrumental music?")

    proba_pretty = gradio.Label(num_top_classes=5, label="Class probabilities")

    inputs = [hours_per_week, num_songs, num_playlists, share_label, decade_label, live_events_label, lyrics_label]
    for comp in inputs:
        comp.change(fn=do_predict, inputs=inputs, outputs=[proba_pretty])

    gradio.Examples(
        examples=EXAMPLES,
        inputs=inputs,
        label="Representative examples",
        examples_per_page=5,
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()