Agent-UN / scripts /run_motion_chunked.py
danielrosehill's picture
Add Gradio visualization for UN Gaza ceasefire resolution simulation
8c1f582
#!/usr/bin/env python3
"""
Chunked UN Motion Simulation Runner
Processes countries in batches to allow incremental saving and better control.
"""
import argparse
import json
import sys
from pathlib import Path
from datetime import datetime
# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent
sys.path.insert(0, str(PROJECT_ROOT))
from run_motion import MotionRunner
def run_chunked_simulation(motion_id: str, chunk_size: int = 20, provider: str = "cloud", model: str = None):
"""Run simulation in chunks and save incrementally"""
runner = MotionRunner(provider=provider, model=model)
motion = runner.load_motion(motion_id)
countries = runner.get_country_list()
print(f"\n{'='*60}")
print(f"Chunked Motion Runner")
print(f"Motion: {motion_id}")
print(f"Total Countries: {len(countries)}")
print(f"Chunk Size: {chunk_size}")
print(f"Provider: {provider} | Model: {runner.model}")
print(f"{'='*60}\n")
# Initialize results
all_votes = []
vote_counts = {"yes": 0, "no": 0, "abstain": 0}
# Process in chunks
total_chunks = (len(countries) + chunk_size - 1) // chunk_size
for chunk_idx in range(total_chunks):
start_idx = chunk_idx * chunk_size
end_idx = min(start_idx + chunk_size, len(countries))
chunk = countries[start_idx:end_idx]
print(f"\n{'─'*60}")
print(f"Processing Chunk {chunk_idx + 1}/{total_chunks}")
print(f"Countries {start_idx + 1}-{end_idx} of {len(countries)}")
print(f"{'─'*60}\n")
for i, country in enumerate(chunk, start=start_idx + 1):
print(f"[{i}/{len(countries)}] Querying {country['name']}...", end=" ", flush=True)
result = runner.query_agent(country, motion)
vote_counts[result["vote"]] += 1
all_votes.append({
"country": country['name'],
"country_slug": country['slug'],
"vote": result["vote"],
"statement": result["statement"],
"error": result.get("error")
})
vote_emoji = {"yes": "βœ…", "no": "❌", "abstain": "βšͺ"}
print(f"{vote_emoji[result['vote']]} {result['vote'].upper()}")
# Save intermediate results after each chunk
intermediate_results = {
"motion_id": motion_id,
"motion_path": motion['path'],
"timestamp": datetime.utcnow().isoformat() + "Z",
"provider": provider,
"model": runner.model,
"total_votes": len(all_votes),
"vote_summary": vote_counts.copy(),
"votes": all_votes,
"status": f"In progress: {len(all_votes)}/{len(countries)} countries processed"
}
# Save to intermediate file
intermediate_path = runner.results_dir / f"{motion_id}_partial.json"
runner.results_dir.mkdir(parents=True, exist_ok=True)
with open(intermediate_path, 'w', encoding='utf-8') as f:
json.dump(intermediate_results, f, indent=2, ensure_ascii=False)
print(f"\nπŸ’Ύ Saved intermediate results: {len(all_votes)}/{len(countries)} countries")
print(f" File: {intermediate_path}")
# Final results
print(f"\n{'='*60}")
print(f"Final Vote Summary:")
print(f" YES: {vote_counts['yes']:3d} ({vote_counts['yes']/len(countries)*100:.1f}%)")
print(f" NO: {vote_counts['no']:3d} ({vote_counts['no']/len(countries)*100:.1f}%)")
print(f" ABSTAIN: {vote_counts['abstain']:3d} ({vote_counts['abstain']/len(countries)*100:.1f}%)")
print(f"{'='*60}\n")
final_results = {
"motion_id": motion_id,
"motion_path": motion['path'],
"timestamp": datetime.utcnow().isoformat() + "Z",
"provider": provider,
"model": runner.model,
"total_votes": len(countries),
"vote_summary": vote_counts,
"votes": all_votes
}
# Save final results
runner.save_results(final_results)
# Clean up partial file
intermediate_path = runner.results_dir / f"{motion_id}_partial.json"
if intermediate_path.exists():
intermediate_path.unlink()
return final_results
def main():
parser = argparse.ArgumentParser(description="Run UN motion simulation in chunks")
parser.add_argument("motion_id", help="ID of the motion to run")
parser.add_argument("--chunk-size", type=int, default=20, help="Countries per chunk (default: 20)")
parser.add_argument("--provider", choices=["cloud", "local"], default="cloud", help="AI provider")
parser.add_argument("--model", help="Model name (optional)")
args = parser.parse_args()
try:
run_chunked_simulation(
args.motion_id,
chunk_size=args.chunk_size,
provider=args.provider,
model=args.model
)
print("\nβœ“ Chunked simulation complete!")
except KeyboardInterrupt:
print("\n\n⚠ Simulation interrupted by user")
print("πŸ’Ύ Partial results saved in *_partial.json file")
sys.exit(130)
except Exception as e:
print(f"\n❌ Error: {e}", file=sys.stderr)
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()