File size: 29,851 Bytes
1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 1c8d125 96e1a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import argparse
import logging
import os
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torch.optim as optim
import torchmetrics
import wandb
import yaml
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from src.data.containers import BatchTimeSeriesContainer
from src.data.loaders import SyntheticValidationDataset, create_synthetic_dataset
from src.gift_eval.aggregate_results import aggregate_results
from src.gift_eval.constants import ALL_DATASETS
from src.gift_eval.evaluate import evaluate_in_memory
from src.models.model import TimeSeriesModel
from src.optim.lr_scheduler import WarmupStableDecayScheduler, get_scheduler
from src.plotting.plot_multivariate_timeseries import plot_from_container
from src.utils.utils import (
generate_descriptive_model_name,
seed_everything,
)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Suppress debug messages from external libraries
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.getLogger("matplotlib.font_manager").setLevel(logging.WARNING)
logging.getLogger("PIL").setLevel(logging.WARNING)
logging.getLogger("PIL.PngImagePlugin").setLevel(logging.WARNING)
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
def setup_distributed():
"""Initializes the distributed process group."""
dist.init_process_group(backend="nccl")
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
return local_rank
def cleanup_distributed():
"""Cleans up the distributed process group safely."""
try:
if dist.is_available() and dist.is_initialized():
try:
dist.barrier()
except Exception:
pass
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
except Exception:
pass
try:
dist.destroy_process_group()
except Exception as e:
logger.warning(f"Error during destroy_process_group: {e}")
except Exception:
pass
def is_main_process():
return dist.get_rank() == 0
class TrainingPipeline:
def __init__(self, config: dict):
self.config = config
self.grad_accum_enabled = bool(self.config.get("gradient_accumulation_enabled", False))
self.accumulation_steps = (
max(1, int(self.config.get("accumulation_steps", 1))) if self.grad_accum_enabled else 1
)
# --- Distributed Setup ---
self.local_rank = setup_distributed()
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.device = torch.device(f"cuda:{self.local_rank}")
self.initial_epoch = 0
self.wandb_step_offset = 0
self._setup()
if is_main_process():
logger.info("Loaded config:")
for key, value in self.config.items():
logger.info(f"{key}: {value}")
def _setup(self) -> None:
seed_everything(self.config["seed"])
self.config["model_name"] = generate_descriptive_model_name(self.config)
# Resolve run output directory
self.run_output_dir = (
self.config.get("run_output_dir") or f"{self.config['model_path']}/{self.config['model_name']}"
)
self.config["resolved_run_output_dir"] = self.run_output_dir
if is_main_process() and self.config.get("wandb"):
init_kwargs = {
"name": self.config["model_name"],
"resume": "allow", # Allows resuming a run if the ID exists
}
# Allow selecting which account/team (entity) to log runs to
# If not provided, W&B will use the default entity for the API key
if self.config.get("wandb_entity"):
init_kwargs["entity"] = self.config.get("wandb_entity")
# If continuing training, try to load the previous run ID
if self.config.get("continue_training"):
if self.config.get("wandb_run_id"):
init_kwargs["id"] = self.config["wandb_run_id"]
logger.info(f"Attempting to resume wandb run with ID: {self.config['wandb_run_id']}")
# Initialize Weights & Biases
wandb.init(
project=self.config.get("wandb_project_name", "TimeSeriesForecasting"),
config=self.config,
**init_kwargs,
)
self.num_training_iterations = self.config.get("num_training_iterations")
self.model = TimeSeriesModel(**self.config["TimeSeriesModel"]).to(self.device)
if is_main_process():
logger.info("=" * 80)
logger.info(
f"Initializing model with {sum(p.numel() for p in self.model.parameters()) / 1e6:.2f}M parameters"
)
logger.info("=" * 80)
logger.info(f"Run output directory: {self.run_output_dir}")
dist.barrier(device_ids=[self.local_rank])
self._setup_optimizer()
self._load_checkpoint()
dist.barrier(device_ids=[self.local_rank])
logger.info(
f"Distributed training setup: rank {self.rank}, world size {self.world_size}, "
f"local rank {self.local_rank}, device {self.device}"
)
self.model = DDP(self.model, device_ids=[self.local_rank], find_unused_parameters=True)
logger.info(f"Distributed Data Parallel model initialized on rank {self.local_rank} with device {self.device}")
augmentations_config = self.config.get("data_augmentation", {})
nan_stats_path = augmentations_config.get("nan_stats_path")
nan_patterns_path = augmentations_config.get("nan_patterns_path")
chosen_scaler_name = self.config.get("TimeSeriesModel", {}).get("scaler")
# 1. Create the dataset object with rank-based file sharding for scalability
self.train_dataset = create_synthetic_dataset(
base_data_dir=self.config.get("train_data_path"),
batch_size=self.config.get("batch_size", 128),
num_batches_per_epoch=self.num_training_iterations,
generator_proportions=self.config.get("generator_proportions"),
augmentations=augmentations_config,
augmentation_probabilities=self.config.get("augmentation_probabilities"),
global_seed=self.config["seed"] + int(os.environ["LOCAL_RANK"]),
nan_stats_path=nan_stats_path,
nan_patterns_path=nan_patterns_path,
chosen_scaler_name=chosen_scaler_name,
rank=self.rank,
world_size=self.world_size,
)
# 2. Create the DistributedSampler
train_sampler = DistributedSampler(
self.train_dataset,
num_replicas=self.world_size,
rank=self.rank,
shuffle=True,
)
# 3. Create the custom collate function
def collate_fn(batch):
# Each item from ComposedDataset is already a complete batch container
return batch[0]
# 4. Create the final DataLoader
self.train_loader = torch.utils.data.DataLoader(
self.train_dataset,
batch_size=1, # Each dataset item is a full batch
sampler=train_sampler,
num_workers=self.config.get("num_workers", 1),
pin_memory=True,
collate_fn=collate_fn,
)
print(
f"Distributed DataLoader created with {len(self.train_loader)} batches "
f"and num workers={self.config.get('num_workers', 0)}"
)
# Validation loader with per-rank file sharding for scalability
val_dataset = SyntheticValidationDataset(
base_data_dir=self.config.get("train_data_path"),
batch_size=self.config.get("validation_batch_size", 64),
num_batches=self.config.get("num_validation_batches", 1),
future_length=512,
generator_proportions=self.config.get("generator_proportions"),
device=self.device,
global_seed=self.config["seed"],
augmentations=augmentations_config,
augmentation_probabilities=self.config.get("augmentation_probabilities"),
chosen_scaler_name=chosen_scaler_name,
nan_stats_path=nan_stats_path,
nan_patterns_path=nan_patterns_path,
rank=self.rank,
world_size=self.world_size,
)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
self.val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1, # Each item from val_dataset is already a complete batch
shuffle=False,
sampler=val_sampler,
collate_fn=collate_fn,
num_workers=0,
)
self._setup_metrics()
def _setup_optimizer(self):
"""Setup optimizer and learning rate scheduler with enhanced WSD support."""
optimizer_config = {
"lr": float(self.config["peak_lr"]),
"weight_decay": float(self.config.get("weight_decay", 0.01)),
"betas": (
float(self.config.get("beta1", 0.9)),
float(self.config.get("beta2", 0.98)),
),
"eps": float(self.config.get("optimizer_eps", 1e-6)),
}
self.optimizer = optim.AdamW(self.model.parameters(), **optimizer_config)
# Calculate scheduler parameters
effective_accum_steps = self.accumulation_steps
total_steps = int(self.num_training_iterations // effective_accum_steps // self.world_size)
scheduler_type = self.config.get("lr_scheduler", "warmup_stable_decay")
if scheduler_type == "warmup_stable_decay":
# Calculate phase durations
warmup_ratio = float(self.config.get("warmup_ratio", 0.01)) # 1% of training
stable_ratio = float(self.config.get("stable_ratio", 0.85)) # 85% of training
num_warmup_steps = int(total_steps * warmup_ratio)
num_stable_steps = int(total_steps * stable_ratio)
# Use the standalone scheduler class for better control
self.scheduler = WarmupStableDecayScheduler(
optimizer=self.optimizer,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
total_steps=total_steps,
min_lr_ratio=self.config.get("min_lr_ratio", 0.01),
decay_type=self.config.get("decay_type", "cosine"),
verbose=is_main_process(),
)
if is_main_process():
logger.info("WSD Scheduler configured:")
logger.info(f" Total steps: {total_steps}")
logger.info(f" Warmup steps: {num_warmup_steps} ({warmup_ratio * 100:.1f}%)")
logger.info(f" Stable steps: {num_stable_steps} ({stable_ratio * 100:.1f}%)")
logger.info(f" Decay steps: {total_steps - num_warmup_steps - num_stable_steps}")
logger.info(f" Peak LR: {self.config['peak_lr']}")
logger.info(f" Min LR: {self.config['peak_lr'] * float(self.config.get('min_lr_ratio', 0.01))}")
elif scheduler_type == "cosine_with_warmup":
num_warmup_steps = int(total_steps * self.config.get("warmup_ratio", 0.01))
self.scheduler = get_scheduler(
scheduler_type="cosine_with_warmup",
optimizer=self.optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
scheduler_kwargs={
"min_lr_ratio": float(self.config.get("min_lr_ratio", 0.01)),
"num_cycles": float(self.config.get("num_cycles", 0.5)),
},
)
elif scheduler_type == "cosine_with_restarts":
num_warmup_steps = int(total_steps * self.config.get("warmup_ratio", 0.01))
self.scheduler = get_scheduler(
scheduler_type="cosine_with_restarts",
optimizer=self.optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
scheduler_kwargs={
"min_lr_ratio": float(self.config.get("min_lr_ratio", 0.01)),
"num_cycles": int(self.config.get("num_restart_cycles", 4)),
},
)
elif scheduler_type == "cosine":
self.scheduler = CosineAnnealingLR(
self.optimizer,
T_max=total_steps,
eta_min=float(self.config["peak_lr"]) * float(self.config.get("min_lr_ratio", 0.01)),
)
else:
raise ValueError(f"Unsupported scheduler type: {scheduler_type}")
if is_main_process():
logger.info(f"Optimizer configured with {scheduler_type} scheduler")
def _setup_metrics(self):
self.train_metrics = {
"mape": torchmetrics.MeanAbsolutePercentageError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
"mse": torchmetrics.MeanSquaredError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
"smape": torchmetrics.SymmetricMeanAbsolutePercentageError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
}
self.val_metrics = {
"mape": torchmetrics.MeanAbsolutePercentageError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
"mse": torchmetrics.MeanSquaredError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
"smape": torchmetrics.SymmetricMeanAbsolutePercentageError(
dist_sync_on_step=False, compute_on_cpu=False, sync_on_compute=True
).to(self.device),
}
def _load_checkpoint(self):
# Only attempt to load a checkpoint when continuing training and a path is provided
if not self.config.get("continue_training"):
return
checkpoint_path_value = self.config.get("checkpoint_path")
if not checkpoint_path_value:
if is_main_process():
logger.info("continue_training=True but no checkpoint_path provided; starting from scratch.")
return
checkpoint_path = Path(checkpoint_path_value)
if not checkpoint_path.exists():
if is_main_process():
logger.warning(f"Checkpoint path does not exist at {checkpoint_path}. Starting from scratch.")
return
if is_main_process():
logger.info(f"Loading checkpoint from: {checkpoint_path}")
ckpt = torch.load(checkpoint_path, map_location=self.device)
self.model.load_state_dict(ckpt["model_state_dict"])
def _save_checkpoint(self, epoch: int):
dist.barrier()
if is_main_process():
model_dir = self.run_output_dir
os.makedirs(model_dir, exist_ok=True)
unwrapped_model = self.model.module
checkpoint = {
"epoch": epoch,
"model_state_dict": unwrapped_model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"wandb_run_id": self.config.get("wandb_run_id"),
}
if hasattr(self.scheduler, "state_dict"):
checkpoint["scheduler_state_dict"] = self.scheduler.state_dict()
elif hasattr(self.scheduler, "current_step"):
checkpoint["wsd_scheduler_state"] = self.scheduler.state_dict()
checkpoint_path = f"{model_dir}/checkpoint.pth"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Checkpoint saved for step {epoch} to {checkpoint_path}")
config_path = f"{model_dir}/config.yaml"
with open(config_path, "w") as config_file:
yaml.dump(self.config, config_file)
def _inverse_scale(self, model, output: dict) -> torch.Tensor:
# Use the unwrapped model (module) to access scaler
return model.module.scaler.inverse_scale(output["result"], output["scale_statistics"])
def _train_epoch(self, epoch: int) -> float:
self.model.train()
self.train_loader.sampler.set_epoch(epoch)
train_loss, total_loss_sum, total_samples = 0.0, 0.0, 0.0
pbar = tqdm(
self.train_loader,
desc=f"Training (start_step={epoch})",
disable=not is_main_process(),
)
self.optimizer.zero_grad()
for i, batch in enumerate(pbar):
batch_size = batch.history_values.size(0)
batch.to(self.device)
with torch.autocast(dtype=torch.bfloat16, device_type="cuda"):
output = self.model(batch)
loss = self.model.module.compute_loss(batch.future_values, output)
if self.accumulation_steps > 1:
loss = loss / self.accumulation_steps
loss.backward()
total_loss_sum += loss.item() * batch_size
total_samples += batch_size
if ((i + 1) % self.accumulation_steps == 0) or ((i + 1) == len(self.train_loader)):
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.get("gradient_clip_val", 1.0))
self.optimizer.step()
if hasattr(self.scheduler, "step") and callable(self.scheduler.step):
if isinstance(self.scheduler, WarmupStableDecayScheduler):
self.scheduler.step()
else:
self.scheduler.step()
self.optimizer.zero_grad()
if (i + 1) % self.config.get("log_interval", 10) == 0:
dist.barrier()
self._validate_epoch(i)
total_loss_tensor = torch.tensor([total_loss_sum, total_samples], device=self.device)
dist.all_reduce(total_loss_tensor, op=dist.ReduceOp.SUM)
global_loss_sum, global_samples = total_loss_tensor.tolist()
train_loss = global_loss_sum / global_samples if global_samples > 0 else 0.0
if self.accumulation_steps > 1:
train_loss *= self.accumulation_steps
if is_main_process():
current_lr = self.optimizer.param_groups[0]["lr"]
step_metrics = {
"train/step_loss": train_loss,
"train/learning_rate": current_lr,
"train/lr_schedule_step": i,
}
if hasattr(self.scheduler, "get_phase"):
step_metrics["train/lr_phase"] = self.scheduler.get_phase()
step_metrics["train/lr_factor"] = self.scheduler.get_lr_factor(self.scheduler.current_step - 1)
if self.config.get("wandb"):
wandb.log(step_metrics, step=i)
logger.info(f"Step {i} | Training Loss: {train_loss:.4f} | LR: {current_lr:.2e}")
total_loss_sum, total_samples = 0.0, 0
if (i + 1) % self.config.get("save_every", 10) == 0:
self._save_checkpoint(i)
return train_loss
def _validate_epoch(self, epoch: int) -> float:
self.model.eval()
for metric in self.val_metrics.values():
metric.reset()
first_batch_for_plotting = None
total_loss_sum, total_samples = 0.0, 0
with torch.no_grad():
self.val_loader.sampler.set_epoch(epoch)
for batch_idx, batch in enumerate(self.val_loader):
if is_main_process() and batch_idx == 0:
first_batch_for_plotting = batch.to(torch.device("cpu"))
batch = batch.to(self.device)
batch_size = batch.history_values.size(0)
with torch.autocast(dtype=torch.bfloat16, device_type="cuda"):
output = self.model.module(batch) # Use unwrapped model
loss = self.model.module.compute_loss(batch.future_values, output)
inv_scaled_output = self._inverse_scale(self.model, output)
total_loss_sum += loss.item() * batch_size
total_samples += batch_size
self._update_metrics(
self.val_metrics,
inv_scaled_output,
batch.future_values,
distributed=False,
)
total_stats = torch.tensor([total_loss_sum, total_samples], device=self.device)
dist.all_reduce(total_stats, op=dist.ReduceOp.SUM)
global_loss_sum, global_samples = total_stats.tolist()
avg_val_loss = global_loss_sum / global_samples if global_samples > 0 else 0.0
val_computed_metrics = {name: metric.compute() for name, metric in self.val_metrics.items()}
if is_main_process():
log_metrics = {"val/loss": avg_val_loss}
log_metrics.update({f"val/{name}": value.item() for name, value in val_computed_metrics.items()})
if self.config.get("wandb"):
wandb.log(log_metrics, step=epoch + self.wandb_step_offset)
logger.info(
f"Epoch {epoch} | Validation Loss: {avg_val_loss:.4f} | "
f"Validation MAPE: {val_computed_metrics.get('mape', -1).item():.4f}"
)
if first_batch_for_plotting is not None:
self._plot_validation_examples(epoch, first_batch_for_plotting, plot_all=True)
# Ensure all ranks finish validation before returning to training
dist.barrier()
return avg_val_loss
def _update_metrics(
self,
metrics: dict,
predictions: torch.Tensor,
targets: torch.Tensor,
distributed: bool = True,
):
"""
Gathers tensors if in distributed mode and updates the metric objects.
"""
if distributed and dist.is_initialized():
world_size = dist.get_world_size()
predictions_list = [torch.zeros_like(predictions) for _ in range(world_size)]
targets_list = [torch.zeros_like(targets) for _ in range(world_size)]
dist.all_gather(predictions_list, predictions)
dist.all_gather(targets_list, targets)
predictions_gathered = torch.cat(predictions_list, dim=0)
targets_gathered = torch.cat(targets_list, dim=0)
else:
predictions_gathered = predictions
targets_gathered = targets
unwrapped_model = self.model.module
if unwrapped_model.loss_type == "quantile":
try:
median_idx = unwrapped_model.quantiles.index(0.5)
predictions_gathered = predictions_gathered[..., median_idx]
except (ValueError, AttributeError):
if is_main_process():
logger.warning("Median (0.5) quantile not found for metric calculation. Skipping.")
return # Exit if we can't get a point forecast
if predictions_gathered.dim() == 3:
b, p, c = predictions_gathered.shape
predictions_flat = predictions_gathered.permute(0, 2, 1).reshape(b * c, p)
targets_flat = targets_gathered.permute(0, 2, 1).reshape(b * c, p)
for metric in metrics.values():
metric.update(predictions_flat, targets_flat)
def _plot_validation_examples(
self,
epoch: int,
plot_batch: BatchTimeSeriesContainer,
plot_indices: list[int] | None = None,
plot_all: bool = False,
) -> None:
"""
Plots validation examples from a given batch and logs them to WandB.
This method should only be called from the main process.
"""
if (not self.config.get("wandb")) or (not self.config.get("wandb_plots", False)):
return
if plot_indices is None:
plot_indices = [0, 1, 2, 3, 4]
model = self.model.module
with torch.inference_mode():
plot_batch.to(self.device)
with torch.autocast(dtype=torch.bfloat16, device_type="cuda"):
output = model(plot_batch)
inv_scaled_output = self._inverse_scale(self.model, output)
pred_future = inv_scaled_output.cpu().numpy()
batch_size = plot_batch.history_values.size(0)
if plot_all:
indices_to_plot = list(range(batch_size))
else:
indices_to_plot = [i for i in plot_indices if i < batch_size]
for i in indices_to_plot:
fig = plot_from_container(
batch=plot_batch,
sample_idx=i,
predicted_values=pred_future,
model_quantiles=model.quantiles if model.loss_type == "quantile" else None,
title=f"Epoch {epoch} - Val Sample {i}",
output_file=None,
show=False,
)
wandb.log(
{f"val_plots/sample_{i}": wandb.Image(fig)},
step=epoch + self.wandb_step_offset,
)
plt.close(fig)
def train(self) -> None:
if is_main_process():
per_rank_iterations = len(self.train_loader)
optimizer_steps_per_rank = (per_rank_iterations + self.accumulation_steps - 1) // self.accumulation_steps
logger.info(
f"Starting training: configured_iterations={self.num_training_iterations}, "
f"world_size={self.world_size}, per_rank_iterations={per_rank_iterations}, "
f"accumulation_steps={self.accumulation_steps}, "
f"optimizer_steps_per_rank={optimizer_steps_per_rank}"
)
self._train_epoch(self.initial_epoch)
dist.barrier()
if not is_main_process():
try:
if torch.cuda.is_available():
try:
torch.cuda.synchronize()
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
except Exception:
pass
cleanup_distributed()
return
cleanup_distributed()
gift_eval_config = self.config.get("gift_eval")
if gift_eval_config.get("evaluate_on_gift_eval"):
output_dir = f"{self.run_output_dir}/gift_eval_results"
evaluate_in_memory(
model=self.model.module if isinstance(self.model, DDP) else self.model,
config=self.config,
datasets=ALL_DATASETS,
terms=["short", "medium", "long"],
dataset_storage_path=gift_eval_config.get("dataset_storage_path"),
batch_size=self.config.get("batch_size"),
max_context_length=gift_eval_config.get("max_context_length"),
output_dir=output_dir,
create_plots=gift_eval_config.get("create_plots"),
max_plots=gift_eval_config.get("max_plots"),
)
aggregate_results(
result_root_dir=output_dir,
)
if self.config.get("wandb"):
logger.info("TRAINING COMPLETED SUCCESSFULLY!")
wandb.finish()
try:
if torch.cuda.is_available():
try:
torch.cuda.synchronize()
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
except Exception:
pass
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", default="./configs/train.yaml", help="Path to config file")
parser.add_argument(
"--run_output_dir",
default=None,
help=(
"Optional output directory to store checkpoints and artifacts. "
"If provided, overrides model_path/model_name for saving."
),
)
args = parser.parse_args()
with open(args.config) as config_file:
config = yaml.safe_load(config_file)
# Allow CLI to override output directory for artifacts/logical run folder
if getattr(args, "run_output_dir", None):
config["run_output_dir"] = args.run_output_dir
try:
pipeline = TrainingPipeline(config)
pipeline.train()
finally:
# Protect final CUDA ops to avoid raising if device already torn down
try:
if torch.cuda.is_available():
try:
torch.cuda.synchronize()
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
except Exception:
pass
|