Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,20 +38,26 @@ def compute_embeddings(problems):
|
|
| 38 |
def find_similar_problems(df, similarity_threshold=0.9):
|
| 39 |
"""Find similar problems using cosine similarity, optimized for speed."""
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
start_time = time.time()
|
| 43 |
embeddings = compute_embeddings(df['problem'].tolist())
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
st.status("π Computing cosine similarity matrix...")
|
|
|
|
| 47 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
| 48 |
-
st.success("β
Similarity matrix computed!", icon="β
")
|
| 49 |
|
| 50 |
-
#
|
|
|
|
|
|
|
|
|
|
| 51 |
num_problems = len(df)
|
| 52 |
upper_triangle_indices = np.triu_indices(num_problems, k=1)
|
| 53 |
|
| 54 |
-
st.status("π Filtering similar problems...")
|
| 55 |
i_indices, j_indices = upper_triangle_indices
|
| 56 |
similarity_scores = similarity_matrix[i_indices, j_indices]
|
| 57 |
|
|
@@ -61,14 +67,18 @@ def find_similar_problems(df, similarity_threshold=0.9):
|
|
| 61 |
filtered_j = j_indices[mask]
|
| 62 |
filtered_scores = similarity_scores[mask]
|
| 63 |
|
| 64 |
-
# Convert results into a sorted list of tuples
|
| 65 |
pairs = [
|
| 66 |
(df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score))
|
| 67 |
for i, j, score in zip(filtered_i, filtered_j, filtered_scores)
|
| 68 |
]
|
| 69 |
|
| 70 |
sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
st.success(f"β
Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="π")
|
| 73 |
|
| 74 |
return sorted_pairs
|
|
|
|
| 38 |
def find_similar_problems(df, similarity_threshold=0.9):
|
| 39 |
"""Find similar problems using cosine similarity, optimized for speed."""
|
| 40 |
|
| 41 |
+
status_msgs = [] # Store status messages to clear later
|
| 42 |
+
|
| 43 |
+
# Step 1: Compute embeddings
|
| 44 |
+
msg = st.status("π Computing problem embeddings...")
|
| 45 |
+
status_msgs.append(msg)
|
| 46 |
start_time = time.time()
|
| 47 |
embeddings = compute_embeddings(df['problem'].tolist())
|
| 48 |
+
|
| 49 |
+
# Step 2: Compute similarity matrix
|
| 50 |
+
msg = st.status("π Computing cosine similarity matrix...")
|
| 51 |
+
status_msgs.append(msg)
|
| 52 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
|
|
|
| 53 |
|
| 54 |
+
# Step 3: Filter top similarities
|
| 55 |
+
msg = st.status("π Filtering similar problems...")
|
| 56 |
+
status_msgs.append(msg)
|
| 57 |
+
|
| 58 |
num_problems = len(df)
|
| 59 |
upper_triangle_indices = np.triu_indices(num_problems, k=1)
|
| 60 |
|
|
|
|
| 61 |
i_indices, j_indices = upper_triangle_indices
|
| 62 |
similarity_scores = similarity_matrix[i_indices, j_indices]
|
| 63 |
|
|
|
|
| 67 |
filtered_j = j_indices[mask]
|
| 68 |
filtered_scores = similarity_scores[mask]
|
| 69 |
|
|
|
|
| 70 |
pairs = [
|
| 71 |
(df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score))
|
| 72 |
for i, j, score in zip(filtered_i, filtered_j, filtered_scores)
|
| 73 |
]
|
| 74 |
|
| 75 |
sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
|
| 76 |
+
|
| 77 |
+
# Step 4: Remove intermediate messages
|
| 78 |
+
for msg in status_msgs:
|
| 79 |
+
msg.empty() # Clear only the intermediate messages
|
| 80 |
+
|
| 81 |
+
# Step 5: Display final success message
|
| 82 |
st.success(f"β
Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="π")
|
| 83 |
|
| 84 |
return sorted_pairs
|