Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,22 +18,27 @@ import hmac
|
|
| 18 |
import hashlib
|
| 19 |
from uuid import uuid4
|
| 20 |
from datetime import datetime
|
|
|
|
|
|
|
| 21 |
|
| 22 |
load_dotenv()
|
| 23 |
|
| 24 |
st.set_page_config(page_title="LLM Healthcare Benchmarking", layout="wide")
|
| 25 |
|
| 26 |
-
|
| 27 |
WRITE_LOCK = threading.Lock()
|
| 28 |
-
DATA_DIR = "data"
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def initialize_session_state():
|
| 39 |
if 'api_configured' not in st.session_state:
|
|
@@ -54,8 +59,8 @@ def initialize_session_state():
|
|
| 54 |
st.session_state.last_evaluated_dataset = None
|
| 55 |
|
| 56 |
initialize_session_state()
|
| 57 |
-
def setup_api_clients():
|
| 58 |
|
|
|
|
| 59 |
with st.sidebar:
|
| 60 |
st.title("API Configuration")
|
| 61 |
|
|
@@ -66,8 +71,11 @@ def setup_api_clients():
|
|
| 66 |
password = st.text_input("Password", type="password")
|
| 67 |
|
| 68 |
if st.button("Verify Credentials"):
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
try:
|
| 72 |
st.session_state.togetherai_client = OpenAI(
|
| 73 |
api_key=os.getenv('TOGETHERAI_API_KEY'),
|
|
@@ -79,7 +87,7 @@ def setup_api_clients():
|
|
| 79 |
st.session_state.anthropic_client = Anthropic(
|
| 80 |
api_key=os.getenv('ANTHROPIC_API_KEY')
|
| 81 |
)
|
| 82 |
-
genai.configure(api_key=os.
|
| 83 |
|
| 84 |
st.session_state.api_configured = True
|
| 85 |
st.success("Successfully configured the API clients with stored keys!")
|
|
@@ -117,6 +125,10 @@ def setup_api_clients():
|
|
| 117 |
st.session_state.api_configured = False
|
| 118 |
|
| 119 |
setup_api_clients()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
MAX_CONCURRENT_CALLS = 5
|
| 121 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
| 122 |
|
|
@@ -191,6 +203,7 @@ def get_model_response(question, options, prompt_template, model_name, clients):
|
|
| 191 |
)
|
| 192 |
response_text = chat_session.send_message(prompt).text
|
| 193 |
|
|
|
|
| 194 |
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 195 |
if not json_match:
|
| 196 |
return f"Error: Invalid response format", response_text
|
|
@@ -206,6 +219,7 @@ def get_model_response(question, options, prompt_template, model_name, clients):
|
|
| 206 |
except Exception as e:
|
| 207 |
return f"Error: {str(e)}", str(e)
|
| 208 |
|
|
|
|
| 209 |
def evaluate_response(model_response, correct_answer):
|
| 210 |
if model_response.startswith("Error:"):
|
| 211 |
return False
|
|
@@ -233,10 +247,15 @@ def process_single_evaluation(question, prompt_template, model_name, clients, la
|
|
| 233 |
'explanation': question['explanation'],
|
| 234 |
'timestamp': datetime.utcnow().isoformat()
|
| 235 |
}
|
|
|
|
| 236 |
with WRITE_LOCK:
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
return result
|
| 242 |
|
|
@@ -245,8 +264,7 @@ def process_evaluations_concurrently(questions, prompt_template, models_to_evalu
|
|
| 245 |
total_iterations = len(models_to_evaluate) * len(questions)
|
| 246 |
current_iteration = 0
|
| 247 |
|
| 248 |
-
|
| 249 |
-
if os.path.exists(RESULTS_FILE):
|
| 250 |
existing_df = pd.read_csv(RESULTS_FILE)
|
| 251 |
completed = set(zip(existing_df['model'], existing_df['question']))
|
| 252 |
else:
|
|
@@ -283,7 +301,7 @@ def main():
|
|
| 283 |
if 'all_results' not in st.session_state:
|
| 284 |
st.session_state.all_results = {}
|
| 285 |
st.session_state.last_evaluated_dataset = None
|
| 286 |
-
if
|
| 287 |
existing_df = pd.read_csv(RESULTS_FILE)
|
| 288 |
all_results = {}
|
| 289 |
for _, row in existing_df.iterrows():
|
|
@@ -302,18 +320,14 @@ def main():
|
|
| 302 |
|
| 303 |
with st.sidebar:
|
| 304 |
if st.button("Reset Results"):
|
| 305 |
-
if
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
st.error(f"Error deleting file {file_path}: {e}")
|
| 314 |
-
st.session_state.all_results = {}
|
| 315 |
-
st.session_state.last_evaluated_dataset = None
|
| 316 |
-
st.success("Results have been reset.")
|
| 317 |
else:
|
| 318 |
st.info("No results to reset.")
|
| 319 |
|
|
@@ -334,7 +348,6 @@ def main():
|
|
| 334 |
|
| 335 |
models_to_evaluate = selected_models
|
| 336 |
|
| 337 |
-
|
| 338 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
| 339 |
Question: {question}
|
| 340 |
|
|
@@ -358,7 +371,7 @@ Important:
|
|
| 358 |
- Only the "answer" field will be used for evaluation
|
| 359 |
- Ensure your response is in valid JSON format'''
|
| 360 |
|
| 361 |
-
|
| 362 |
col1, col2 = st.columns([2, 1])
|
| 363 |
with col1:
|
| 364 |
prompt_template = st.text_area(
|
|
@@ -375,74 +388,90 @@ Important:
|
|
| 375 |
- `{options}`: The multiple choice options
|
| 376 |
""")
|
| 377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
| 384 |
-
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
| 385 |
-
|
| 386 |
-
if selected_subject != "All":
|
| 387 |
-
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
num_questions = st.number_input("Number of questions to evaluate", min_value=1, max_value=len(questions), value=1, step=1)
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
if st.button("Start Evaluation"):
|
| 394 |
-
with st.spinner("Starting evaluation..."):
|
| 395 |
-
selected_questions = questions[:num_questions]
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
clients = {
|
| 399 |
-
"togetherai": st.session_state["togetherai_client"],
|
| 400 |
-
"openai": st.session_state["openai_client"],
|
| 401 |
-
"anthropic": st.session_state["anthropic_client"]
|
| 402 |
-
}
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
|
| 406 |
-
|
| 407 |
-
progress_container = st.container()
|
| 408 |
-
progress_bar = progress_container.progress(0)
|
| 409 |
-
status_text = progress_container.empty()
|
| 410 |
-
|
| 411 |
-
def update_progress(current, total):
|
| 412 |
-
progress = current / total
|
| 413 |
-
progress_bar.progress(progress)
|
| 414 |
-
status_text.text(f"Progress: {current}/{total} evaluations completed")
|
| 415 |
-
|
| 416 |
-
results = process_evaluations_concurrently(
|
| 417 |
-
selected_questions,
|
| 418 |
-
prompt_template,
|
| 419 |
-
models_to_evaluate,
|
| 420 |
-
update_progress,
|
| 421 |
-
clients,
|
| 422 |
-
last_evaluated_dataset
|
| 423 |
-
)
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
st.session_state.detailed_model = list(all_results.keys())[0]
|
| 437 |
-
if st.session_state.detailed_dataset is None:
|
| 438 |
-
st.session_state.detailed_dataset = selected_dataset
|
| 439 |
|
| 440 |
-
|
| 441 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
if st.session_state.all_results:
|
| 444 |
st.subheader("Evaluation Results")
|
| 445 |
-
|
|
|
|
| 446 |
for model_name, results in st.session_state.all_results.items():
|
| 447 |
df = pd.DataFrame(results)
|
| 448 |
metrics = {
|
|
@@ -450,27 +479,28 @@ Important:
|
|
| 450 |
}
|
| 451 |
model_metrics[model_name] = metrics
|
| 452 |
|
| 453 |
-
metrics_df = pd.DataFrame(model_metrics).T
|
| 454 |
|
| 455 |
st.subheader("Model Performance Comparison")
|
| 456 |
accuracy_chart = alt.Chart(
|
| 457 |
-
metrics_df
|
| 458 |
).mark_bar().encode(
|
| 459 |
-
x=alt.X('
|
| 460 |
-
y=alt.Y('
|
| 461 |
-
color=alt.Color('
|
| 462 |
-
tooltip=['
|
| 463 |
).properties(
|
| 464 |
height=300,
|
| 465 |
title={
|
| 466 |
"text": "Model Accuracy",
|
| 467 |
-
"
|
| 468 |
-
"
|
| 469 |
-
"dy": 20
|
| 470 |
}
|
| 471 |
-
)
|
| 472 |
|
| 473 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
|
|
|
|
|
|
| 474 |
if st.session_state.all_results:
|
| 475 |
st.subheader("Detailed Results")
|
| 476 |
|
|
@@ -494,12 +524,12 @@ Important:
|
|
| 494 |
with col2:
|
| 495 |
selected_dataset_details = st.selectbox(
|
| 496 |
"Select dataset",
|
| 497 |
-
options=[st.session_state.last_evaluated_dataset],
|
| 498 |
key="dataset_select",
|
| 499 |
on_change=update_dataset
|
| 500 |
)
|
| 501 |
|
| 502 |
-
if selected_model_details in st.session_state.all_results:
|
| 503 |
results = st.session_state.all_results[selected_model_details]
|
| 504 |
df = pd.DataFrame(results)
|
| 505 |
accuracy = df['is_correct'].mean()
|
|
@@ -537,21 +567,17 @@ Important:
|
|
| 537 |
|
| 538 |
st.markdown("---")
|
| 539 |
st.subheader("Download Results")
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
data
|
| 551 |
-
file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
|
| 552 |
-
mime="text/csv",
|
| 553 |
-
key="download_all_results"
|
| 554 |
-
)
|
| 555 |
|
| 556 |
if __name__ == "__main__":
|
| 557 |
main()
|
|
|
|
| 18 |
import hashlib
|
| 19 |
from uuid import uuid4
|
| 20 |
from datetime import datetime
|
| 21 |
+
from huggingface_hub import CommitScheduler, Repository
|
| 22 |
+
from pathlib import Path
|
| 23 |
|
| 24 |
load_dotenv()
|
| 25 |
|
| 26 |
st.set_page_config(page_title="LLM Healthcare Benchmarking", layout="wide")
|
| 27 |
|
|
|
|
| 28 |
WRITE_LOCK = threading.Lock()
|
| 29 |
+
DATA_DIR = Path("data")
|
| 30 |
+
DATA_DIR.mkdir(exist_ok=True)
|
| 31 |
+
RESULTS_FILE = DATA_DIR / "results.csv"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
scheduler = CommitScheduler(
|
| 35 |
+
repo_id=os.getenv("HF_REPO_ID"),
|
| 36 |
+
repo_type="dataset",
|
| 37 |
+
folder_path=DATA_DIR,
|
| 38 |
+
path_in_repo="data",
|
| 39 |
+
every=10,
|
| 40 |
+
token=os.getenv("HF_TOKEN")
|
| 41 |
+
)
|
| 42 |
|
| 43 |
def initialize_session_state():
|
| 44 |
if 'api_configured' not in st.session_state:
|
|
|
|
| 59 |
st.session_state.last_evaluated_dataset = None
|
| 60 |
|
| 61 |
initialize_session_state()
|
|
|
|
| 62 |
|
| 63 |
+
def setup_api_clients():
|
| 64 |
with st.sidebar:
|
| 65 |
st.title("API Configuration")
|
| 66 |
|
|
|
|
| 71 |
password = st.text_input("Password", type="password")
|
| 72 |
|
| 73 |
if st.button("Verify Credentials"):
|
| 74 |
+
stored_username = os.getenv("STREAMLIT_USERNAME", "")
|
| 75 |
+
stored_password = os.getenv("STREAMLIT_PASSWORD", "")
|
| 76 |
+
|
| 77 |
+
if (hmac.compare_digest(username, stored_username) and
|
| 78 |
+
hmac.compare_digest(password, stored_password)):
|
| 79 |
try:
|
| 80 |
st.session_state.togetherai_client = OpenAI(
|
| 81 |
api_key=os.getenv('TOGETHERAI_API_KEY'),
|
|
|
|
| 87 |
st.session_state.anthropic_client = Anthropic(
|
| 88 |
api_key=os.getenv('ANTHROPIC_API_KEY')
|
| 89 |
)
|
| 90 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
| 91 |
|
| 92 |
st.session_state.api_configured = True
|
| 93 |
st.success("Successfully configured the API clients with stored keys!")
|
|
|
|
| 125 |
st.session_state.api_configured = False
|
| 126 |
|
| 127 |
setup_api_clients()
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
scheduler.start()
|
| 131 |
+
|
| 132 |
MAX_CONCURRENT_CALLS = 5
|
| 133 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
| 134 |
|
|
|
|
| 203 |
)
|
| 204 |
response_text = chat_session.send_message(prompt).text
|
| 205 |
|
| 206 |
+
# Extract JSON from response
|
| 207 |
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 208 |
if not json_match:
|
| 209 |
return f"Error: Invalid response format", response_text
|
|
|
|
| 219 |
except Exception as e:
|
| 220 |
return f"Error: {str(e)}", str(e)
|
| 221 |
|
| 222 |
+
|
| 223 |
def evaluate_response(model_response, correct_answer):
|
| 224 |
if model_response.startswith("Error:"):
|
| 225 |
return False
|
|
|
|
| 247 |
'explanation': question['explanation'],
|
| 248 |
'timestamp': datetime.utcnow().isoformat()
|
| 249 |
}
|
| 250 |
+
|
| 251 |
with WRITE_LOCK:
|
| 252 |
+
if RESULTS_FILE.exists():
|
| 253 |
+
existing_df = pd.read_csv(RESULTS_FILE)
|
| 254 |
+
updated_df = existing_df.append(result, ignore_index=True)
|
| 255 |
+
else:
|
| 256 |
+
updated_df = pd.DataFrame([result])
|
| 257 |
+
|
| 258 |
+
updated_df.to_csv(RESULTS_FILE, index=False)
|
| 259 |
|
| 260 |
return result
|
| 261 |
|
|
|
|
| 264 |
total_iterations = len(models_to_evaluate) * len(questions)
|
| 265 |
current_iteration = 0
|
| 266 |
|
| 267 |
+
if RESULTS_FILE.exists():
|
|
|
|
| 268 |
existing_df = pd.read_csv(RESULTS_FILE)
|
| 269 |
completed = set(zip(existing_df['model'], existing_df['question']))
|
| 270 |
else:
|
|
|
|
| 301 |
if 'all_results' not in st.session_state:
|
| 302 |
st.session_state.all_results = {}
|
| 303 |
st.session_state.last_evaluated_dataset = None
|
| 304 |
+
if RESULTS_FILE.exists():
|
| 305 |
existing_df = pd.read_csv(RESULTS_FILE)
|
| 306 |
all_results = {}
|
| 307 |
for _, row in existing_df.iterrows():
|
|
|
|
| 320 |
|
| 321 |
with st.sidebar:
|
| 322 |
if st.button("Reset Results"):
|
| 323 |
+
if RESULTS_FILE.exists():
|
| 324 |
+
try:
|
| 325 |
+
RESULTS_FILE.unlink()
|
| 326 |
+
st.session_state.all_results = {}
|
| 327 |
+
st.session_state.last_evaluated_dataset = None
|
| 328 |
+
st.success("Results have been reset.")
|
| 329 |
+
except Exception as e:
|
| 330 |
+
st.error(f"Error deleting file: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
else:
|
| 332 |
st.info("No results to reset.")
|
| 333 |
|
|
|
|
| 348 |
|
| 349 |
models_to_evaluate = selected_models
|
| 350 |
|
|
|
|
| 351 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
| 352 |
Question: {question}
|
| 353 |
|
|
|
|
| 371 |
- Only the "answer" field will be used for evaluation
|
| 372 |
- Ensure your response is in valid JSON format'''
|
| 373 |
|
| 374 |
+
# Customize Prompt Template
|
| 375 |
col1, col2 = st.columns([2, 1])
|
| 376 |
with col1:
|
| 377 |
prompt_template = st.text_area(
|
|
|
|
| 388 |
- `{options}`: The multiple choice options
|
| 389 |
""")
|
| 390 |
|
| 391 |
+
# Load Dataset
|
| 392 |
+
if st.session_state.api_configured:
|
| 393 |
+
with st.spinner("Loading dataset..."):
|
| 394 |
+
questions = load_dataset_by_name(selected_dataset)
|
| 395 |
+
else:
|
| 396 |
+
st.warning("Please configure the API keys in the sidebar to load datasets and proceed.")
|
| 397 |
+
questions = []
|
| 398 |
|
| 399 |
+
# Filter by Subject
|
| 400 |
+
if questions:
|
| 401 |
+
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
| 402 |
+
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
+
if selected_subject != "All":
|
| 405 |
+
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
| 406 |
+
|
| 407 |
+
# Number of Questions to Evaluate
|
| 408 |
+
num_questions = st.number_input(
|
| 409 |
+
"Number of questions to evaluate",
|
| 410 |
+
min_value=1,
|
| 411 |
+
max_value=len(questions),
|
| 412 |
+
value=min(10, len(questions)),
|
| 413 |
+
step=1
|
| 414 |
+
)
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
+
# Start Evaluation Button
|
| 417 |
+
if st.button("Start Evaluation"):
|
| 418 |
+
if not models_to_evaluate:
|
| 419 |
+
st.error("Please select at least one model to evaluate.")
|
| 420 |
+
else:
|
| 421 |
+
with st.spinner("Starting evaluation..."):
|
| 422 |
+
selected_questions = questions[:num_questions]
|
| 423 |
+
|
| 424 |
+
clients = {
|
| 425 |
+
"togetherai": st.session_state["togetherai_client"],
|
| 426 |
+
"openai": st.session_state["openai_client"],
|
| 427 |
+
"anthropic": st.session_state["anthropic_client"]
|
| 428 |
+
}
|
| 429 |
+
|
| 430 |
+
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
|
| 431 |
|
| 432 |
+
progress_container = st.container()
|
| 433 |
+
progress_bar = progress_container.progress(0)
|
| 434 |
+
status_text = progress_container.empty()
|
| 435 |
+
|
| 436 |
+
def update_progress(current, total):
|
| 437 |
+
progress = current / total
|
| 438 |
+
progress_bar.progress(progress)
|
| 439 |
+
status_text.text(f"Progress: {current}/{total} evaluations completed")
|
| 440 |
+
|
| 441 |
+
results = process_evaluations_concurrently(
|
| 442 |
+
selected_questions,
|
| 443 |
+
prompt_template,
|
| 444 |
+
models_to_evaluate,
|
| 445 |
+
update_progress,
|
| 446 |
+
clients,
|
| 447 |
+
last_evaluated_dataset
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# Update Session State with New Results
|
| 451 |
+
all_results = st.session_state.all_results.copy()
|
| 452 |
+
for result in results:
|
| 453 |
+
model = result.pop('model')
|
| 454 |
+
if model not in all_results:
|
| 455 |
+
all_results[model] = []
|
| 456 |
+
all_results[model].append(result)
|
| 457 |
+
|
| 458 |
+
st.session_state.all_results = all_results
|
| 459 |
+
st.session_state.last_evaluated_dataset = selected_dataset
|
| 460 |
+
|
| 461 |
+
# Set Default Detailed Model and Dataset if Not Set
|
| 462 |
+
if st.session_state.detailed_model is None and all_results:
|
| 463 |
+
st.session_state.detailed_model = list(all_results.keys())[0]
|
| 464 |
+
if st.session_state.detailed_dataset is None:
|
| 465 |
+
st.session_state.detailed_dataset = selected_dataset
|
| 466 |
+
|
| 467 |
+
st.success("Evaluation completed!")
|
| 468 |
+
st.experimental_rerun()
|
| 469 |
+
|
| 470 |
+
# Display Evaluation Results
|
| 471 |
if st.session_state.all_results:
|
| 472 |
st.subheader("Evaluation Results")
|
| 473 |
+
model_metrics = {}
|
| 474 |
+
|
| 475 |
for model_name, results in st.session_state.all_results.items():
|
| 476 |
df = pd.DataFrame(results)
|
| 477 |
metrics = {
|
|
|
|
| 479 |
}
|
| 480 |
model_metrics[model_name] = metrics
|
| 481 |
|
| 482 |
+
metrics_df = pd.DataFrame(model_metrics).T.reset_index().rename(columns={'index': 'Model'})
|
| 483 |
|
| 484 |
st.subheader("Model Performance Comparison")
|
| 485 |
accuracy_chart = alt.Chart(
|
| 486 |
+
metrics_df
|
| 487 |
).mark_bar().encode(
|
| 488 |
+
x=alt.X('Model:N', title=None),
|
| 489 |
+
y=alt.Y('Accuracy:Q', title='Accuracy', scale=alt.Scale(domain=[0, 1])),
|
| 490 |
+
color=alt.Color('Model:N', scale=alt.Scale(scheme='blues')),
|
| 491 |
+
tooltip=['Model:N', 'Accuracy:Q']
|
| 492 |
).properties(
|
| 493 |
height=300,
|
| 494 |
title={
|
| 495 |
"text": "Model Accuracy",
|
| 496 |
+
"anchor": "middle",
|
| 497 |
+
"fontSize": 20
|
|
|
|
| 498 |
}
|
| 499 |
+
).interactive()
|
| 500 |
|
| 501 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
| 502 |
+
|
| 503 |
+
# Display Detailed Results
|
| 504 |
if st.session_state.all_results:
|
| 505 |
st.subheader("Detailed Results")
|
| 506 |
|
|
|
|
| 524 |
with col2:
|
| 525 |
selected_dataset_details = st.selectbox(
|
| 526 |
"Select dataset",
|
| 527 |
+
options=[st.session_state.last_evaluated_dataset] if st.session_state.last_evaluated_dataset else [],
|
| 528 |
key="dataset_select",
|
| 529 |
on_change=update_dataset
|
| 530 |
)
|
| 531 |
|
| 532 |
+
if selected_model_details and selected_model_details in st.session_state.all_results:
|
| 533 |
results = st.session_state.all_results[selected_model_details]
|
| 534 |
df = pd.DataFrame(results)
|
| 535 |
accuracy = df['is_correct'].mean()
|
|
|
|
| 567 |
|
| 568 |
st.markdown("---")
|
| 569 |
st.subheader("Download Results")
|
| 570 |
+
if RESULTS_FILE.exists():
|
| 571 |
+
csv_data = RESULTS_FILE.read_text(encoding='utf-8')
|
| 572 |
+
st.download_button(
|
| 573 |
+
label="Download All Results as CSV",
|
| 574 |
+
data=csv_data,
|
| 575 |
+
file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
|
| 576 |
+
mime="text/csv",
|
| 577 |
+
key="download_all_results"
|
| 578 |
+
)
|
| 579 |
+
else:
|
| 580 |
+
st.info("No data available to download.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
if __name__ == "__main__":
|
| 583 |
main()
|