import gradio as gr from huggingface_hub import InferenceClient import whisper import torch import numpy as np def transcribe_audio(audio): """Transcribe audio using Whisper model""" if audio is None: return "" # Load Whisper model model = whisper.load_model("base") # Transcribe audio result = model.transcribe(audio) return result["text"] def respond( message, history: list[dict[str, str]], system_message, max_tokens, temperature, top_p, hf_token: gr.OAuthToken, ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = message.choices token = "" if len(choices) and choices[0].delta.content: token = choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], chatbot=gr.Chatbot(height=500), textbox=gr.Textbox(placeholder="Type your message here or use voice input...", container=False, scale=7), additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), examples=[ "Hello! How are you?", "Can you help me with something?", "Tell me a joke" ], multimodal=True, ) with gr.Blocks() as demo: with gr.Sidebar(): gr.LoginButton() gr.Markdown("## Voice Input Settings") audio_input = gr.Audio( sources=["microphone"], type="filepath", label="Record your message", interactive=True ) transcribe_btn = gr.Button("Transcribe Audio", variant="primary") transcribed_text = gr.Textbox(label="Transcribed Text", interactive=False) transcribe_btn.click( fn=transcribe_audio, inputs=audio_input, outputs=transcribed_text ) # Add transcribed text to chat use_transcribed_btn = gr.Button("Send to Chat", variant="secondary") use_transcribed_btn.click( fn=lambda x: x, inputs=transcribed_text, outputs=chatbot.textbox ) chatbot.render() if __name__ == "__main__": demo.launch()