Spaces:
Runtime error
Runtime error
fix of videos, and better code by gdr/daroche
Browse files
app.py
CHANGED
|
@@ -1,114 +1,14 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from PIL import Image
|
| 3 |
-
from RealESRGAN import RealESRGAN
|
| 4 |
import gradio as gr
|
| 5 |
-
import os
|
| 6 |
-
from random import randint
|
| 7 |
-
import shutil
|
| 8 |
-
|
| 9 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 10 |
-
model2 = RealESRGAN(device, scale=2)
|
| 11 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
|
| 12 |
-
model4 = RealESRGAN(device, scale=4)
|
| 13 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
| 14 |
-
model8 = RealESRGAN(device, scale=8)
|
| 15 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def inference_image(image, size):
|
| 19 |
-
global model2
|
| 20 |
-
global model4
|
| 21 |
-
global model8
|
| 22 |
-
if image is None:
|
| 23 |
-
raise gr.Error("Image not uploaded")
|
| 24 |
-
|
| 25 |
-
width, height = image.size
|
| 26 |
-
if width >= 5000 or height >= 5000:
|
| 27 |
-
raise gr.Error("The image is too large.")
|
| 28 |
-
|
| 29 |
-
if torch.cuda.is_available():
|
| 30 |
-
torch.cuda.empty_cache()
|
| 31 |
-
|
| 32 |
-
if size == '2x':
|
| 33 |
-
try:
|
| 34 |
-
result = model2.predict(image.convert('RGB'))
|
| 35 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 36 |
-
print(e)
|
| 37 |
-
model2 = RealESRGAN(device, scale=2)
|
| 38 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
| 39 |
-
result = model2.predict(image.convert('RGB'))
|
| 40 |
-
elif size == '4x':
|
| 41 |
-
try:
|
| 42 |
-
result = model4.predict(image.convert('RGB'))
|
| 43 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 44 |
-
print(e)
|
| 45 |
-
model4 = RealESRGAN(device, scale=4)
|
| 46 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
| 47 |
-
result = model2.predict(image.convert('RGB'))
|
| 48 |
-
else:
|
| 49 |
-
try:
|
| 50 |
-
result = model8.predict(image.convert('RGB'))
|
| 51 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 52 |
-
print(e)
|
| 53 |
-
model8 = RealESRGAN(device, scale=8)
|
| 54 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
| 55 |
-
result = model2.predict(image.convert('RGB'))
|
| 56 |
-
|
| 57 |
-
print(f"Image size ({device}): {size} ... OK")
|
| 58 |
-
return result
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def inference_video(video, size):
|
| 63 |
-
_id = randint(1, 10000)
|
| 64 |
-
INPUT_DIR = "tmp"
|
| 65 |
-
os.makedirs(INPUT_DIR, exist_ok=True)
|
| 66 |
-
os.chdir(INPUT_DIR)
|
| 67 |
-
|
| 68 |
-
upload_folder = 'upload'
|
| 69 |
-
result_folder = 'results'
|
| 70 |
-
video_folder = 'videos'
|
| 71 |
-
video_result_folder = 'results_videos'
|
| 72 |
-
video_mp4_result_folder = 'results_mp4_videos'
|
| 73 |
-
result_restored_imgs_folder = 'restored_imgs'
|
| 74 |
-
|
| 75 |
-
os.makedirs(upload_folder, exist_ok=True)
|
| 76 |
-
|
| 77 |
-
os.makedirs(video_folder, exist_ok=True)
|
| 78 |
-
|
| 79 |
-
os.makedirs(video_result_folder, exist_ok=True)
|
| 80 |
-
|
| 81 |
-
os.makedirs(video_mp4_result_folder, exist_ok=True)
|
| 82 |
-
|
| 83 |
-
os.makedirs(result_folder, exist_ok=True)
|
| 84 |
-
|
| 85 |
-
os.chdir("results")
|
| 86 |
-
os.makedirs(result_restored_imgs_folder, exist_ok=True)
|
| 87 |
-
os.chdir("..")
|
| 88 |
-
try:
|
| 89 |
-
# Specify the desired output file path with the custom name and ".mp4" extension
|
| 90 |
-
output_file_path = f"/{INPUT_DIR}/videos/input.mp4"
|
| 91 |
-
|
| 92 |
-
# Save the video input to the specified file path
|
| 93 |
-
with open(output_file_path, 'wb') as output_file:
|
| 94 |
-
output_file.write(video)
|
| 95 |
-
print(f"Video input saved as {output_file_path}")
|
| 96 |
-
except Exception as e:
|
| 97 |
-
print(f"Error saving video input: {str(e)}")
|
| 98 |
-
|
| 99 |
-
os.chdir("..")
|
| 100 |
-
os.system("python inference_video.py")
|
| 101 |
-
return os.path.join(f'/{INPUT_DIR}/results_mp4_videos/', 'input.mp4')
|
| 102 |
-
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
input_image = gr.Image(type='pil', label='Input Image')
|
| 106 |
-
input_model_image = gr.Radio(['
|
| 107 |
submit_image_button = gr.Button('Submit')
|
| 108 |
output_image = gr.Image(type="filepath", label="Output Image")
|
| 109 |
|
| 110 |
tab_img = gr.Interface(
|
| 111 |
-
fn=
|
| 112 |
inputs=[input_image, input_model_image],
|
| 113 |
outputs=output_image,
|
| 114 |
title="Real-ESRGAN Pytorch",
|
|
@@ -116,12 +16,12 @@ tab_img = gr.Interface(
|
|
| 116 |
)
|
| 117 |
|
| 118 |
input_video = gr.Video(label='Input Video')
|
| 119 |
-
input_model_video = gr.Radio(['
|
| 120 |
submit_video_button = gr.Button('Submit')
|
| 121 |
output_video = gr.Video(label='Output Video')
|
| 122 |
|
| 123 |
tab_vid = gr.Interface(
|
| 124 |
-
fn=
|
| 125 |
inputs=[input_video, input_model_video],
|
| 126 |
outputs=output_video,
|
| 127 |
title="Real-ESRGAN Pytorch",
|
|
@@ -130,6 +30,4 @@ tab_vid = gr.Interface(
|
|
| 130 |
|
| 131 |
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
demo.launch(debug=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
from infer import infer_image, infer_video
|
| 4 |
|
| 5 |
input_image = gr.Image(type='pil', label='Input Image')
|
| 6 |
+
input_model_image = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=4, label="Model Upscale/Enhance Type")
|
| 7 |
submit_image_button = gr.Button('Submit')
|
| 8 |
output_image = gr.Image(type="filepath", label="Output Image")
|
| 9 |
|
| 10 |
tab_img = gr.Interface(
|
| 11 |
+
fn=infer_image,
|
| 12 |
inputs=[input_image, input_model_image],
|
| 13 |
outputs=output_image,
|
| 14 |
title="Real-ESRGAN Pytorch",
|
|
|
|
| 16 |
)
|
| 17 |
|
| 18 |
input_video = gr.Video(label='Input Video')
|
| 19 |
+
input_model_video = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=4, label="Model Upscale/Enhance Type")
|
| 20 |
submit_video_button = gr.Button('Submit')
|
| 21 |
output_video = gr.Video(label='Output Video')
|
| 22 |
|
| 23 |
tab_vid = gr.Interface(
|
| 24 |
+
fn=infer_video,
|
| 25 |
inputs=[input_video, input_model_video],
|
| 26 |
outputs=output_video,
|
| 27 |
title="Real-ESRGAN Pytorch",
|
|
|
|
| 30 |
|
| 31 |
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
|
| 32 |
|
|
|
|
|
|
|
| 33 |
demo.launch(debug=True, show_error=True)
|
infer.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import cv2
|
| 2 |
+
# from os.path import isfile, join
|
| 3 |
+
# import subprocess
|
| 4 |
+
# import os
|
| 5 |
+
# from RealESRGAN import RealESRGAN
|
| 6 |
+
# import torch
|
| 7 |
+
# import gradio as gr
|
| 8 |
+
|
| 9 |
+
# IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
|
| 10 |
+
|
| 11 |
+
# def inference_image(image, size):
|
| 12 |
+
# global model2
|
| 13 |
+
# global model4
|
| 14 |
+
# global model8
|
| 15 |
+
# if image is None:
|
| 16 |
+
# raise gr.Error("Image not uploaded")
|
| 17 |
+
|
| 18 |
+
# width, height = image.size
|
| 19 |
+
# if width >= 5000 or height >= 5000:
|
| 20 |
+
# raise gr.Error("The image is too large.")
|
| 21 |
+
|
| 22 |
+
# if torch.cuda.is_available():
|
| 23 |
+
# torch.cuda.empty_cache()
|
| 24 |
+
|
| 25 |
+
# if size == '2x':
|
| 26 |
+
# try:
|
| 27 |
+
# result = model2.predict(image.convert('RGB'))
|
| 28 |
+
# except torch.cuda.OutOfMemoryError as e:
|
| 29 |
+
# print(e)
|
| 30 |
+
# model2 = RealESRGAN(device, scale=2)
|
| 31 |
+
# model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
| 32 |
+
# result = model2.predict(image.convert('RGB'))
|
| 33 |
+
# elif size == '4x':
|
| 34 |
+
# try:
|
| 35 |
+
# result = model4.predict(image.convert('RGB'))
|
| 36 |
+
# except torch.cuda.OutOfMemoryError as e:
|
| 37 |
+
# print(e)
|
| 38 |
+
# model4 = RealESRGAN(device, scale=4)
|
| 39 |
+
# model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
| 40 |
+
# result = model2.predict(image.convert('RGB'))
|
| 41 |
+
# else:
|
| 42 |
+
# try:
|
| 43 |
+
# result = model8.predict(image.convert('RGB'))
|
| 44 |
+
# except torch.cuda.OutOfMemoryError as e:
|
| 45 |
+
# print(e)
|
| 46 |
+
# model8 = RealESRGAN(device, scale=8)
|
| 47 |
+
# model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
| 48 |
+
# result = model2.predict(image.convert('RGB'))
|
| 49 |
+
|
| 50 |
+
# print(f"Frame of the Video size ({device}): {size} ... OK")
|
| 51 |
+
# return result
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# # assign directory
|
| 55 |
+
# directory = 'videos' #PATH_WITH_INPUT_VIDEOS
|
| 56 |
+
# zee = 0
|
| 57 |
+
|
| 58 |
+
# def convert_frames_to_video(pathIn,pathOut,fps):
|
| 59 |
+
# global INPUT_DIR
|
| 60 |
+
# cap = cv2.VideoCapture(f'/{INPUT_DIR}/videos/input.mp4')
|
| 61 |
+
# fps = cap.get(cv2.CAP_PROP_FPS)
|
| 62 |
+
# frame_array = []
|
| 63 |
+
# files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
|
| 64 |
+
# #for sorting the file names properly
|
| 65 |
+
# files.sort(key = lambda x: int(x[5:-4]))
|
| 66 |
+
# size2 = (0,0)
|
| 67 |
+
|
| 68 |
+
# for i in range(len(files)):
|
| 69 |
+
# filename=pathIn + files[i]
|
| 70 |
+
# #reading each files
|
| 71 |
+
# img = cv2.imread(filename)
|
| 72 |
+
# height, width, layers = img.shape
|
| 73 |
+
# size = (width,height)
|
| 74 |
+
# size2 = size
|
| 75 |
+
# print(filename)
|
| 76 |
+
# #inserting the frames into an image array
|
| 77 |
+
# frame_array.append(img)
|
| 78 |
+
# out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
|
| 79 |
+
# for i in range(len(frame_array)):
|
| 80 |
+
# # writing to a image array
|
| 81 |
+
# out.write(frame_array[i])
|
| 82 |
+
# out.release()
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# for filename in os.listdir(directory):
|
| 86 |
+
|
| 87 |
+
# f = os.path.join(directory, filename)
|
| 88 |
+
# # checking if it is a file
|
| 89 |
+
# if os.path.isfile(f):
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# print("PROCESSING :"+str(f)+"\n")
|
| 93 |
+
# # Read the video from specified path
|
| 94 |
+
|
| 95 |
+
# #video to frames
|
| 96 |
+
# cam = cv2.VideoCapture(str(f))
|
| 97 |
+
|
| 98 |
+
# try:
|
| 99 |
+
|
| 100 |
+
# # PATH TO STORE VIDEO FRAMES
|
| 101 |
+
# if not os.path.exists(f'/{INPUT_DIR}/upload/'):
|
| 102 |
+
# os.makedirs(f'/{INPUT_DIR}/upload/')
|
| 103 |
+
|
| 104 |
+
# # if not created then raise error
|
| 105 |
+
# except OSError:
|
| 106 |
+
# print ('Error: Creating directory of data')
|
| 107 |
+
|
| 108 |
+
# # frame
|
| 109 |
+
# currentframe = 0
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
# while(True):
|
| 113 |
+
|
| 114 |
+
# # reading from frame
|
| 115 |
+
# ret,frame = cam.read()
|
| 116 |
+
|
| 117 |
+
# if ret:
|
| 118 |
+
# # if video is still left continue creating images
|
| 119 |
+
# name = f'/{INPUT_DIR}/upload/frame' + str(currentframe) + '.jpg'
|
| 120 |
+
|
| 121 |
+
# # writing the extracted images
|
| 122 |
+
# cv2.imwrite(name, frame)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# # increasing counter so that it will
|
| 126 |
+
# # show how many frames are created
|
| 127 |
+
# currentframe += 1
|
| 128 |
+
# print(currentframe)
|
| 129 |
+
# else:
|
| 130 |
+
# #deletes all the videos you uploaded for upscaling
|
| 131 |
+
# #for f in os.listdir(video_folder):
|
| 132 |
+
# # os.remove(os.path.join(video_folder, f))
|
| 133 |
+
|
| 134 |
+
# break
|
| 135 |
+
|
| 136 |
+
# # Release all space and windows once done
|
| 137 |
+
# cam.release()
|
| 138 |
+
# cv2.destroyAllWindows()
|
| 139 |
+
|
| 140 |
+
# #apply super-resolution on all frames of a video
|
| 141 |
+
|
| 142 |
+
# # Specify the directory path
|
| 143 |
+
# all_frames_path = f"/{INPUT_DIR}/upload/"
|
| 144 |
+
|
| 145 |
+
# # Get a list of all files in the directory
|
| 146 |
+
# file_names = os.listdir(all_frames_path)
|
| 147 |
+
|
| 148 |
+
# # process the files
|
| 149 |
+
# for file_name in file_names:
|
| 150 |
+
# inference_image(f"/{INPUT_DIR}/upload/{file_name}")
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# #convert super res frames to .avi
|
| 154 |
+
# pathIn = f'/{INPUT_DIR}/results/restored_imgs/'
|
| 155 |
+
|
| 156 |
+
# zee = zee+1
|
| 157 |
+
# fName = "video"+str(zee)
|
| 158 |
+
# filenameVid = f"{fName}.avi"
|
| 159 |
+
|
| 160 |
+
# pathOut = f"/{INPUT_DIR}/results_videos/"+filenameVid
|
| 161 |
+
|
| 162 |
+
# convert_frames_to_video(pathIn, pathOut, fps)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# #convert .avi to .mp4
|
| 166 |
+
# src = f'/{INPUT_DIR}/results_videos/'
|
| 167 |
+
# dst = f'/{INPUT_DIR}/results_mp4_videos/'
|
| 168 |
+
|
| 169 |
+
# for root, dirs, filenames in os.walk(src, topdown=False):
|
| 170 |
+
# #print(filenames)
|
| 171 |
+
# for filename in filenames:
|
| 172 |
+
# print('[INFO] 1',filename)
|
| 173 |
+
# try:
|
| 174 |
+
# _format = ''
|
| 175 |
+
# if ".flv" in filename.lower():
|
| 176 |
+
# _format=".flv"
|
| 177 |
+
# if ".mp4" in filename.lower():
|
| 178 |
+
# _format=".mp4"
|
| 179 |
+
# if ".avi" in filename.lower():
|
| 180 |
+
# _format=".avi"
|
| 181 |
+
# if ".mov" in filename.lower():
|
| 182 |
+
# _format=".mov"
|
| 183 |
+
|
| 184 |
+
# inputfile = os.path.join(root, filename)
|
| 185 |
+
# print('[INFO] 1',inputfile)
|
| 186 |
+
# outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
|
| 187 |
+
# subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
|
| 188 |
+
# except:
|
| 189 |
+
# print("An exception occurred")
|
| 190 |
+
|
| 191 |
+
from PIL import Image
|
| 192 |
+
import cv2 as cv
|
| 193 |
+
import torch
|
| 194 |
+
from RealESRGAN import RealESRGAN
|
| 195 |
+
import tempfile
|
| 196 |
+
import numpy as np
|
| 197 |
+
import tqdm
|
| 198 |
+
|
| 199 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 200 |
+
|
| 201 |
+
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
|
| 202 |
+
if img is None:
|
| 203 |
+
raise Exception("Image not uploaded")
|
| 204 |
+
|
| 205 |
+
width, height = img.size
|
| 206 |
+
|
| 207 |
+
if width >= 5000 or height >= 5000:
|
| 208 |
+
raise Exception("The image is too large.")
|
| 209 |
+
|
| 210 |
+
model = RealESRGAN(device, scale=size_modifier)
|
| 211 |
+
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
| 212 |
+
|
| 213 |
+
result = model.predict(img.convert('RGB'))
|
| 214 |
+
print(f"Image size ({device}): {size_modifier} ... OK")
|
| 215 |
+
return result
|
| 216 |
+
|
| 217 |
+
def infer_video(video_filepath: str, size_modifier: int) -> str:
|
| 218 |
+
model = RealESRGAN(device, scale=size_modifier)
|
| 219 |
+
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
| 220 |
+
|
| 221 |
+
cap = cv.VideoCapture(video_filepath)
|
| 222 |
+
|
| 223 |
+
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
| 224 |
+
vid_output = tmpfile.name
|
| 225 |
+
tmpfile.close()
|
| 226 |
+
|
| 227 |
+
vid_writer = cv.VideoWriter(
|
| 228 |
+
vid_output,
|
| 229 |
+
fourcc=cv.VideoWriter.fourcc(*'mp4v'),
|
| 230 |
+
fps=cap.get(cv.CAP_PROP_FPS),
|
| 231 |
+
frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
|
| 235 |
+
|
| 236 |
+
# while cap.isOpened():
|
| 237 |
+
for _ in tqdm.tqdm(range(n_frames)):
|
| 238 |
+
ret, frame = cap.read()
|
| 239 |
+
if not ret:
|
| 240 |
+
break
|
| 241 |
+
|
| 242 |
+
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
| 243 |
+
frame = Image.fromarray(frame)
|
| 244 |
+
|
| 245 |
+
upscaled_frame = model.predict(frame.convert('RGB'))
|
| 246 |
+
|
| 247 |
+
upscaled_frame = np.array(upscaled_frame)
|
| 248 |
+
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
|
| 249 |
+
|
| 250 |
+
print(upscaled_frame.shape)
|
| 251 |
+
|
| 252 |
+
vid_writer.write(upscaled_frame)
|
| 253 |
+
|
| 254 |
+
vid_writer.release()
|
| 255 |
+
|
| 256 |
+
print(f"Video file : {video_filepath}")
|
| 257 |
+
|
| 258 |
+
return vid_output
|
| 259 |
+
|
| 260 |
+
|