Spaces:
Sleeping
Sleeping
Commit
Β·
8ac52c9
1
Parent(s):
c928117
initial commit
Browse files- .gitignore +2 -0
- README.md +33 -0
- app.py +172 -0
- requirements.txt +4 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
myenv/
|
| 2 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -9,6 +9,39 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Retrieval-Augmented Generation (RAG)
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Retrieval-Augmented Generation (RAG)
|
| 12 |
+
models:
|
| 13 |
+
- bert-base-uncased
|
| 14 |
+
- google/flan-t5-base
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# ππ Retrieval-Augmented Generation (RAG) Demo
|
| 18 |
+
|
| 19 |
+
A simple yet powerful RAG application that lets you upload documents and ask questions about them.
|
| 20 |
+
|
| 21 |
+
## Features
|
| 22 |
+
|
| 23 |
+
- π Upload multiple .txt files
|
| 24 |
+
- π Automatic document processing and indexing
|
| 25 |
+
- π‘ Query your documents using natural language
|
| 26 |
+
- π€ Get AI-generated answers based on your content
|
| 27 |
+
|
| 28 |
+
## How It Works
|
| 29 |
+
|
| 30 |
+
1. **Upload** - Add your text files to the system
|
| 31 |
+
2. **Index** - Documents are embedded using `bert-base-uncased`
|
| 32 |
+
3. **Query** - Ask a question about the documents
|
| 33 |
+
4. **Retrieve** - The system finds the most relevant content
|
| 34 |
+
5. **Generate** - `flan-t5-base` creates a natural language answer
|
| 35 |
+
|
| 36 |
+
## Technical Details
|
| 37 |
+
|
| 38 |
+
- Built with Hugging Face's Transformers
|
| 39 |
+
- Uses cosine similarity for matching
|
| 40 |
+
- No GPU required (ZeroGPU compatible)
|
| 41 |
+
- Runs completely in-memory
|
| 42 |
+
|
| 43 |
+
## Usage
|
| 44 |
+
|
| 45 |
+
Simply upload your text files, ask a question, and get an answer within seconds!
|
| 46 |
+
|
| 47 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
|
| 5 |
+
|
| 6 |
+
# Define device
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
# For embeddings using transformers models
|
| 10 |
+
def get_embeddings(texts, model, tokenizer):
|
| 11 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt').to(device)
|
| 12 |
+
with torch.no_grad():
|
| 13 |
+
model_output = model(**encoded_input)
|
| 14 |
+
|
| 15 |
+
# Mean pooling for sentence embeddings
|
| 16 |
+
token_embeddings = model_output.last_hidden_state
|
| 17 |
+
attention_mask = encoded_input['attention_mask']
|
| 18 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 19 |
+
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 20 |
+
return embeddings.cpu().numpy()
|
| 21 |
+
|
| 22 |
+
# Calculate cosine similarity using numpy
|
| 23 |
+
def cosine_similarity(a, b):
|
| 24 |
+
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
| 25 |
+
|
| 26 |
+
# Load models
|
| 27 |
+
def load_models():
|
| 28 |
+
# Embedding model
|
| 29 |
+
embed_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 30 |
+
embed_model = AutoModel.from_pretrained("bert-base-uncased").to(device)
|
| 31 |
+
|
| 32 |
+
# Generation model
|
| 33 |
+
gen_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
| 34 |
+
generator = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base").to(device)
|
| 35 |
+
|
| 36 |
+
return embed_model, embed_tokenizer, generator, gen_tokenizer
|
| 37 |
+
|
| 38 |
+
# Process uploaded text files
|
| 39 |
+
def process_documents(files):
|
| 40 |
+
documents = []
|
| 41 |
+
for file in files:
|
| 42 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
| 43 |
+
content = f.read()
|
| 44 |
+
# Simple document chunking by paragraphs
|
| 45 |
+
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
|
| 46 |
+
documents.extend(paragraphs)
|
| 47 |
+
return documents
|
| 48 |
+
|
| 49 |
+
# Create index from documents
|
| 50 |
+
def create_index(model, tokenizer, documents):
|
| 51 |
+
if not documents:
|
| 52 |
+
return None, None
|
| 53 |
+
|
| 54 |
+
# Create embeddings
|
| 55 |
+
embeddings = get_embeddings(documents, model, tokenizer)
|
| 56 |
+
return embeddings, documents
|
| 57 |
+
|
| 58 |
+
# Retrieve relevant documents
|
| 59 |
+
def retrieve(query, embeddings, documents, model, tokenizer, top_k=3):
|
| 60 |
+
if embeddings is None or documents is None:
|
| 61 |
+
return []
|
| 62 |
+
|
| 63 |
+
# Encode query
|
| 64 |
+
query_embedding = get_embeddings([query], model, tokenizer)[0]
|
| 65 |
+
|
| 66 |
+
# Calculate similarities
|
| 67 |
+
similarities = [cosine_similarity(query_embedding, doc_embed) for doc_embed in embeddings]
|
| 68 |
+
|
| 69 |
+
# Get top k indices
|
| 70 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 71 |
+
|
| 72 |
+
# Return relevant documents
|
| 73 |
+
return [documents[idx] for idx in top_indices]
|
| 74 |
+
|
| 75 |
+
# Generate answer
|
| 76 |
+
def generate_answer(query, context, tokenizer, generator):
|
| 77 |
+
if not context:
|
| 78 |
+
return "No documents have been uploaded yet. Please upload some text files first."
|
| 79 |
+
|
| 80 |
+
# Combine context
|
| 81 |
+
combined_context = " ".join(context)
|
| 82 |
+
|
| 83 |
+
# Create prompt
|
| 84 |
+
prompt = f"Context: {combined_context}\n\nQuestion: {query}\n\nAnswer:"
|
| 85 |
+
|
| 86 |
+
# Generate answer
|
| 87 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(device)
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
outputs = generator.generate(
|
| 91 |
+
**inputs,
|
| 92 |
+
max_length=256,
|
| 93 |
+
num_beams=4,
|
| 94 |
+
temperature=0.7,
|
| 95 |
+
top_p=0.9,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 99 |
+
|
| 100 |
+
# RAG pipeline
|
| 101 |
+
def rag_pipeline(query, files):
|
| 102 |
+
try:
|
| 103 |
+
global embed_model, embed_tokenizer, generator, gen_tokenizer, doc_embeddings, indexed_documents
|
| 104 |
+
|
| 105 |
+
if not files:
|
| 106 |
+
return "Please upload some text files first."
|
| 107 |
+
|
| 108 |
+
# Process documents
|
| 109 |
+
documents = process_documents(files)
|
| 110 |
+
|
| 111 |
+
# Create embeddings
|
| 112 |
+
doc_embeddings, indexed_documents = create_index(embed_model, embed_tokenizer, documents)
|
| 113 |
+
|
| 114 |
+
# Retrieve relevant context
|
| 115 |
+
context = retrieve(query, doc_embeddings, indexed_documents, embed_model, embed_tokenizer)
|
| 116 |
+
|
| 117 |
+
# Generate answer
|
| 118 |
+
answer = generate_answer(query, context, gen_tokenizer, generator)
|
| 119 |
+
|
| 120 |
+
return answer
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"An error occurred: {str(e)}"
|
| 123 |
+
|
| 124 |
+
# Initialize global variables
|
| 125 |
+
embed_model, embed_tokenizer, generator, gen_tokenizer = load_models()
|
| 126 |
+
doc_embeddings, indexed_documents = None, None
|
| 127 |
+
|
| 128 |
+
# Gradio interface
|
| 129 |
+
with gr.Blocks(title="RAG Demo") as demo:
|
| 130 |
+
gr.Markdown("# ππ Retrieval-Augmented Generation (RAG) Demo")
|
| 131 |
+
gr.Markdown("Upload text files and ask questions about their content.")
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
with gr.Column(scale=1):
|
| 135 |
+
file_output = gr.File(
|
| 136 |
+
file_count="multiple",
|
| 137 |
+
label="Upload Text Files (.txt)",
|
| 138 |
+
file_types=[".txt"],
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
with gr.Column(scale=2):
|
| 142 |
+
query_input = gr.Textbox(
|
| 143 |
+
label="Your Question",
|
| 144 |
+
placeholder="Ask a question about the uploaded documents...",
|
| 145 |
+
)
|
| 146 |
+
submit_btn = gr.Button("Get Answer", variant="primary")
|
| 147 |
+
answer_output = gr.Textbox(label="Answer", lines=10)
|
| 148 |
+
|
| 149 |
+
submit_btn.click(
|
| 150 |
+
rag_pipeline,
|
| 151 |
+
inputs=[query_input, file_output],
|
| 152 |
+
outputs=answer_output,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
gr.Markdown(
|
| 156 |
+
"""
|
| 157 |
+
## How it works
|
| 158 |
+
1. Upload one or more `.txt` files
|
| 159 |
+
2. Ask a question related to the content
|
| 160 |
+
3. The system will:
|
| 161 |
+
- Create embeddings using BERT
|
| 162 |
+
- Find similar passages using vector similarity
|
| 163 |
+
- Retrieve relevant context for your query
|
| 164 |
+
- Generate an answer using `flan-t5-base`
|
| 165 |
+
|
| 166 |
+
Built with π€ Hugging Face's models and Gradio
|
| 167 |
+
"""
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Launch the app
|
| 171 |
+
if __name__ == "__main__":
|
| 172 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy<2.0
|
| 2 |
+
torch==2.0.1
|
| 3 |
+
transformers==4.26.0
|
| 4 |
+
gradio==5.30.0
|