Spaces:
Running
Running
F-G Fernandez
commited on
Commit
·
4114231
1
Parent(s):
04ca68c
build(docker): switch to docker sdk
Browse files- Dockerfile +49 -0
- README.md +4 -2
- app.py → src/streamlit_app.py +24 -13
Dockerfile
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Builder stage
|
| 2 |
+
FROM python:3.11-alpine AS builder
|
| 3 |
+
|
| 4 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 5 |
+
ENV PYTHONUNBUFFERED=1
|
| 6 |
+
# Enable bytecode compilation
|
| 7 |
+
ENV UV_COMPILE_BYTECODE=1
|
| 8 |
+
# Copy from the cache instead of linking since it's a mounted volume
|
| 9 |
+
ENV UV_LINK_MODE=copy
|
| 10 |
+
# Install to a specific directory that we can copy later
|
| 11 |
+
# cf. https://github.com/astral-sh/uv/issues/8085#issuecomment-2438256688
|
| 12 |
+
ENV UV_PROJECT_ENVIRONMENT="/opt/venv"
|
| 13 |
+
|
| 14 |
+
RUN apk add --no-cache gcc python3-dev musl-dev linux-headers git
|
| 15 |
+
# Install the project's dependencies using the lockfile and settings
|
| 16 |
+
# https://docs.astral.sh/uv/guides/integration/docker/#using-uv-temporarily
|
| 17 |
+
RUN --mount=from=ghcr.io/astral-sh/uv:0.9.5,source=/uv,target=/bin/uv \
|
| 18 |
+
--mount=type=cache,target=/root/.cache/uv \
|
| 19 |
+
--mount=type=bind,source=uv.lock,target=uv.lock \
|
| 20 |
+
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
|
| 21 |
+
uv pip install -r requirements.txt
|
| 22 |
+
|
| 23 |
+
# Runtime stage
|
| 24 |
+
FROM python:3.11-alpine AS runtime
|
| 25 |
+
|
| 26 |
+
WORKDIR /app
|
| 27 |
+
|
| 28 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 29 |
+
ENV PYTHONUNBUFFERED=1
|
| 30 |
+
ENV PYTHONPATH="/app"
|
| 31 |
+
# Set the path to use our installed packages
|
| 32 |
+
ENV PATH="/opt/venv/bin:$PATH"
|
| 33 |
+
ENV PYTHON_PATH="/opt/venv/lib/python3.11/site-packages"
|
| 34 |
+
|
| 35 |
+
LABEL maintainer="F-G Fernandez <[email protected]>"
|
| 36 |
+
|
| 37 |
+
# Install only curl for healthcheck
|
| 38 |
+
RUN apk add --no-cache curl
|
| 39 |
+
|
| 40 |
+
# Copy installed dependencies from builder
|
| 41 |
+
COPY --from=builder /opt/venv /opt/venv
|
| 42 |
+
|
| 43 |
+
# Copy project code
|
| 44 |
+
COPY src ./src
|
| 45 |
+
|
| 46 |
+
# Entrypoint
|
| 47 |
+
EXPOSE 8501
|
| 48 |
+
HEALTHCHECK --interval=10s --timeout=3s --retries=5 CMD ["curl", "-f", "http://localhost:8501/_stcore/health", "--max-time", "3"]
|
| 49 |
+
ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
CHANGED
|
@@ -3,8 +3,10 @@ title: TorchCAM
|
|
| 3 |
emoji: 🎨
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
-
sdk:
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
pinned: true
|
| 9 |
license: apache-2.0
|
| 10 |
thumbnail: >-
|
|
|
|
| 3 |
emoji: 🎨
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_port: 8501
|
| 8 |
+
tags:
|
| 9 |
+
- streamlit
|
| 10 |
pinned: true
|
| 11 |
license: apache-2.0
|
| 12 |
thumbnail: >-
|
app.py → src/streamlit_app.py
RENAMED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (C) 2021-
|
| 2 |
|
| 3 |
# This program is licensed under the Apache License 2.0.
|
| 4 |
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
|
|
@@ -17,7 +17,17 @@ from torchcam import methods
|
|
| 17 |
from torchcam.methods._utils import locate_candidate_layer
|
| 18 |
from torchcam.utils import overlay_mask
|
| 19 |
|
| 20 |
-
CAM_METHODS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
TV_MODELS = [
|
| 22 |
"resnet18",
|
| 23 |
"resnet50",
|
|
@@ -28,14 +38,14 @@ TV_MODELS = [
|
|
| 28 |
"convnext_small",
|
| 29 |
]
|
| 30 |
LABEL_MAP = requests.get(
|
| 31 |
-
"https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
|
|
|
| 32 |
).json()
|
| 33 |
|
| 34 |
|
| 35 |
def main():
|
| 36 |
-
|
| 37 |
# Wide mode
|
| 38 |
-
st.set_page_config(layout="wide")
|
| 39 |
|
| 40 |
# Designing the interface
|
| 41 |
st.title("TorchCAM: class activation explorer")
|
|
@@ -50,14 +60,12 @@ def main():
|
|
| 50 |
# Sidebar
|
| 51 |
# File selection
|
| 52 |
st.sidebar.title("Input selection")
|
| 53 |
-
# Disabling warning
|
| 54 |
-
st.set_option("deprecation.showfileUploaderEncoding", False)
|
| 55 |
# Choose your own image
|
| 56 |
uploaded_file = st.sidebar.file_uploader("Upload files", type=["png", "jpeg", "jpg"])
|
| 57 |
if uploaded_file is not None:
|
| 58 |
img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
| 59 |
|
| 60 |
-
cols[0].image(img,
|
| 61 |
|
| 62 |
# Model selection
|
| 63 |
st.sidebar.title("Setup")
|
|
@@ -87,25 +95,28 @@ def main():
|
|
| 87 |
)
|
| 88 |
if cam_method is not None:
|
| 89 |
cam_extractor = methods.__dict__[cam_method](
|
| 90 |
-
model,
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
class_choices = [f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)]
|
| 94 |
-
class_selection = st.sidebar.selectbox("Class selection", ["Predicted class (argmax)"
|
| 95 |
|
| 96 |
# For newline
|
| 97 |
st.sidebar.write("\n")
|
| 98 |
|
| 99 |
if st.sidebar.button("Compute CAM"):
|
| 100 |
-
|
| 101 |
if uploaded_file is None:
|
| 102 |
st.sidebar.error("Please upload an image first")
|
| 103 |
|
| 104 |
else:
|
| 105 |
with st.spinner("Analyzing..."):
|
| 106 |
-
|
| 107 |
# Preprocess image
|
| 108 |
-
img_tensor = normalize(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
if torch.cuda.is_available():
|
| 111 |
img_tensor = img_tensor.cuda()
|
|
|
|
| 1 |
+
# Copyright (C) 2021-2025, François-Guillaume Fernandez.
|
| 2 |
|
| 3 |
# This program is licensed under the Apache License 2.0.
|
| 4 |
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
|
|
|
|
| 17 |
from torchcam.methods._utils import locate_candidate_layer
|
| 18 |
from torchcam.utils import overlay_mask
|
| 19 |
|
| 20 |
+
CAM_METHODS = [
|
| 21 |
+
"CAM",
|
| 22 |
+
"GradCAM",
|
| 23 |
+
"GradCAMpp",
|
| 24 |
+
"SmoothGradCAMpp",
|
| 25 |
+
"ScoreCAM",
|
| 26 |
+
"SSCAM",
|
| 27 |
+
"ISCAM",
|
| 28 |
+
"XGradCAM",
|
| 29 |
+
"LayerCAM",
|
| 30 |
+
]
|
| 31 |
TV_MODELS = [
|
| 32 |
"resnet18",
|
| 33 |
"resnet50",
|
|
|
|
| 38 |
"convnext_small",
|
| 39 |
]
|
| 40 |
LABEL_MAP = requests.get(
|
| 41 |
+
"https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json",
|
| 42 |
+
timeout=10,
|
| 43 |
).json()
|
| 44 |
|
| 45 |
|
| 46 |
def main():
|
|
|
|
| 47 |
# Wide mode
|
| 48 |
+
st.set_page_config(page_title="TorchCAM - Class activation explorer", layout="wide")
|
| 49 |
|
| 50 |
# Designing the interface
|
| 51 |
st.title("TorchCAM: class activation explorer")
|
|
|
|
| 60 |
# Sidebar
|
| 61 |
# File selection
|
| 62 |
st.sidebar.title("Input selection")
|
|
|
|
|
|
|
| 63 |
# Choose your own image
|
| 64 |
uploaded_file = st.sidebar.file_uploader("Upload files", type=["png", "jpeg", "jpg"])
|
| 65 |
if uploaded_file is not None:
|
| 66 |
img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
| 67 |
|
| 68 |
+
cols[0].image(img, use_container_width=True)
|
| 69 |
|
| 70 |
# Model selection
|
| 71 |
st.sidebar.title("Setup")
|
|
|
|
| 95 |
)
|
| 96 |
if cam_method is not None:
|
| 97 |
cam_extractor = methods.__dict__[cam_method](
|
| 98 |
+
model,
|
| 99 |
+
target_layer=[s.strip() for s in target_layer.split("+")] if len(target_layer) > 0 else None,
|
| 100 |
)
|
| 101 |
|
| 102 |
class_choices = [f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)]
|
| 103 |
+
class_selection = st.sidebar.selectbox("Class selection", ["Predicted class (argmax)", *class_choices])
|
| 104 |
|
| 105 |
# For newline
|
| 106 |
st.sidebar.write("\n")
|
| 107 |
|
| 108 |
if st.sidebar.button("Compute CAM"):
|
|
|
|
| 109 |
if uploaded_file is None:
|
| 110 |
st.sidebar.error("Please upload an image first")
|
| 111 |
|
| 112 |
else:
|
| 113 |
with st.spinner("Analyzing..."):
|
|
|
|
| 114 |
# Preprocess image
|
| 115 |
+
img_tensor = normalize(
|
| 116 |
+
to_tensor(resize(img, (224, 224))),
|
| 117 |
+
[0.485, 0.456, 0.406],
|
| 118 |
+
[0.229, 0.224, 0.225],
|
| 119 |
+
)
|
| 120 |
|
| 121 |
if torch.cuda.is_available():
|
| 122 |
img_tensor = img_tensor.cuda()
|