|
|
from fastapi import APIRouter |
|
|
from datetime import datetime |
|
|
from datasets import load_dataset |
|
|
from sklearn.metrics import accuracy_score |
|
|
import random |
|
|
import os |
|
|
import numpy as np |
|
|
import librosa |
|
|
import joblib |
|
|
|
|
|
from .utils.evaluation import AudioEvaluationRequest |
|
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
|
|
from dotenv import load_dotenv |
|
|
load_dotenv() |
|
|
|
|
|
router = APIRouter() |
|
|
|
|
|
DESCRIPTION = "Random Baseline" |
|
|
ROUTE = "/audio" |
|
|
|
|
|
def create_spec(dataset, target_sampling_rate=3000): |
|
|
spectograms = [] |
|
|
audio_length = int(36000/(12000/target_sampling_rate)) |
|
|
for d in dataset: |
|
|
audio_sample = librosa.resample( |
|
|
d["audio"]["array"], |
|
|
orig_sr= d["audio"]["sampling_rate"], |
|
|
target_sr=target_sampling_rate |
|
|
) |
|
|
|
|
|
if len(audio_sample) == 0: |
|
|
continue |
|
|
if len(audio_sample) < audio_length: |
|
|
padding_needed = audio_length - len(audio_sample) |
|
|
repeats = (padding_needed // len(audio_sample)) + 1 |
|
|
audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length] |
|
|
elif len(audio_sample) > audio_length: |
|
|
audio_sample = audio_sample[:audio_length] |
|
|
|
|
|
rms = np.sqrt(np.mean(np.square(audio_sample))) |
|
|
scalar = 10 ** (-20 / 20) / (rms + 1e-8) |
|
|
|
|
|
mel = librosa.feature.melspectrogram( |
|
|
y=audio_sample*scalar, |
|
|
sr=12000, |
|
|
n_fft=2048, |
|
|
hop_length=1024, |
|
|
n_mels=12, |
|
|
power=2.0, |
|
|
) |
|
|
mel_db = librosa.power_to_db(mel, ref=np.max) |
|
|
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8) |
|
|
spectograms.append(mel_db_normalized.T.flatten()) |
|
|
|
|
|
return np.stack(spectograms) |
|
|
|
|
|
|
|
|
@router.post(ROUTE, tags=["Audio Task"], |
|
|
description=DESCRIPTION) |
|
|
async def evaluate_audio(request: AudioEvaluationRequest): |
|
|
""" |
|
|
Evaluate audio classification for rainforest sound detection. |
|
|
|
|
|
Current Model: Random Baseline |
|
|
- Makes random predictions from the label space (0-1) |
|
|
- Used as a baseline for comparison |
|
|
""" |
|
|
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
|
|
|
LABEL_MAPPING = { |
|
|
"chainsaw": 0, |
|
|
"environment": 1 |
|
|
} |
|
|
|
|
|
|
|
|
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
|
|
|
test_dataset = dataset["test"] |
|
|
|
|
|
|
|
|
tracker.start() |
|
|
tracker.start_task("inference") |
|
|
|
|
|
test_spec = create_spec(test_dataset) |
|
|
H = np.load("H.npy") |
|
|
W_test = np.dot(test_spec, H) |
|
|
model = joblib.load('model.joblib') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
true_labels = test_dataset["label"] |
|
|
predictions = model.predict(W_test) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
|
|
|
results = { |
|
|
"username": username, |
|
|
"space_url": space_url, |
|
|
"submission_timestamp": datetime.now().isoformat(), |
|
|
"model_description": DESCRIPTION, |
|
|
"accuracy": float(accuracy), |
|
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
|
"emissions_data": clean_emissions_data(emissions_data), |
|
|
"api_route": ROUTE, |
|
|
"dataset_config": { |
|
|
"dataset_name": request.dataset_name, |
|
|
"test_size": request.test_size, |
|
|
"test_seed": request.test_seed |
|
|
} |
|
|
} |
|
|
|
|
|
return results |