Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
-
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
app = flask.Flask(__name__)
|
| 7 |
|
| 8 |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 9 |
|
| 10 |
-
print("🔄 Loading
|
| 11 |
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
model.to(device)
|
|
@@ -26,16 +28,39 @@ def chat():
|
|
| 26 |
if not msg:
|
| 27 |
return jsonify({"error": "No message sent"}), 400
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
output = model.generate(
|
| 31 |
**inputs,
|
| 32 |
-
max_length=
|
| 33 |
do_sample=True,
|
| 34 |
-
top_p=0.
|
| 35 |
-
temperature=0.7
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
return jsonify({"reply": reply})
|
| 40 |
|
| 41 |
except Exception as e:
|
|
|
|
| 1 |
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
+
# Use AutoModelForCausalLM for Decoder-only models like TinyLlama
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
| 7 |
app = flask.Flask(__name__)
|
| 8 |
|
| 9 |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 10 |
|
| 11 |
+
print("🔄 Loading TinyLlama model...")
|
| 12 |
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
+
# Load using AutoModelForCausalLM
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) # Using bfloat16 for better memory/speed on GPU
|
| 16 |
|
| 17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
model.to(device)
|
|
|
|
| 28 |
if not msg:
|
| 29 |
return jsonify({"error": "No message sent"}), 400
|
| 30 |
|
| 31 |
+
# --- Key Change 1: Apply Chat Template ---
|
| 32 |
+
# Format the user message into the model's required chat template
|
| 33 |
+
chat_history = [{"role": "user", "content": msg}]
|
| 34 |
+
# add_generation_prompt=True ensures the model knows it needs to respond
|
| 35 |
+
formatted_prompt = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
| 36 |
+
|
| 37 |
+
# Tokenize the formatted prompt
|
| 38 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
| 39 |
+
|
| 40 |
+
# Generation
|
| 41 |
output = model.generate(
|
| 42 |
**inputs,
|
| 43 |
+
max_length=256,
|
| 44 |
do_sample=True,
|
| 45 |
+
top_p=0.9,
|
| 46 |
+
temperature=0.7,
|
| 47 |
+
eos_token_id=tokenizer.eos_token_id
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# Decode the output
|
| 51 |
+
full_reply = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 52 |
+
|
| 53 |
+
# --- Key Change 2: Extract only the generated response ---
|
| 54 |
+
# The output includes the input prompt, so we extract only the response part.
|
| 55 |
+
|
| 56 |
+
# Identify the assistant marker used by TinyLlama's chat template
|
| 57 |
+
if "[/INST]" in full_reply:
|
| 58 |
+
# This structure is often used: <s>[INST] User Prompt [/INST] Assistant Reply
|
| 59 |
+
reply = full_reply.split("[/INST]")[-1].strip()
|
| 60 |
+
else:
|
| 61 |
+
# Fallback: decode only the newly generated tokens
|
| 62 |
+
reply = tokenizer.decode(output[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True).strip()
|
| 63 |
+
|
| 64 |
return jsonify({"reply": reply})
|
| 65 |
|
| 66 |
except Exception as e:
|